tarinmodel10 / app.py
nagasurendra's picture
Update app.py
fa66a0f verified
raw
history blame
3.6 kB
import cv2
import torch
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
from ultralytics import YOLO
# Load YOLOv8 model
device = "cuda" if torch.cuda.is_available() else "cpu"
model = YOLO('./data/best.pt') # Path to your model
model.to(device)
# Store frames with detected objects
frames_with_detections = []
detection_counts = []
# Define the function that processes the uploaded video
def process_video(video):
# video is now the file path string, not a file object
input_video = cv2.VideoCapture(video) # Directly pass the path to cv2.VideoCapture
# Get frame width, height, and fps from input video
frame_width = int(input_video.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(input_video.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = input_video.get(cv2.CAP_PROP_FPS)
# Resize to reduce computation (optional)
new_width, new_height = 640, 480 # Resize to 640x480 resolution
frame_width, frame_height = new_width, new_height
# Track detected objects by their bounding box coordinates
detected_boxes = set()
total_detections = 0
while True:
# Read a frame from the video
ret, frame = input_video.read()
if not ret:
break # End of video
# Resize the frame to reduce computational load
frame = cv2.resize(frame, (new_width, new_height))
# Perform inference on the frame
results = model(frame) # Automatically uses GPU if available
# Check if any object was detected
if len(results[0].boxes) > 0: # If there are detected objects
# Get the bounding boxes for each detected object
boxes = results[0].boxes.xyxy.cpu().numpy() # Get xyxy coordinates
# Loop through each detection and only show the frame for new objects
for box in boxes:
x1, y1, x2, y2 = box
detection_box = (x1, y1, x2, y2)
# Check if this box was already processed
if detection_box not in detected_boxes:
# Add the box to the set to avoid repeating the detection
detected_boxes.add(detection_box)
total_detections += 1
# Annotate the frame with bounding boxes
annotated_frame = results[0].plot() # Plot the frame with bounding boxes
# Convert the annotated frame to RGB format for displaying
annotated_frame_rgb = cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB)
# Add this frame to the list of frames with detections
frames_with_detections.append(annotated_frame_rgb)
detection_counts.append(total_detections)
# Release resources
input_video.release()
# Return the frames with detections for display
return frames_with_detections
# Create a Gradio Blocks interface
with gr.Blocks() as demo:
# Define a file input for video upload
video_input = gr.Video(label="Upload Video")
# Define the output area to show processed frames
gallery_output = gr.Gallery(label="Detection Album").style(columns=3) # Display images in a row (album)
# Define the function to update frames in the album
def update_gallery(video):
detected_frames = process_video(video)
return detected_frames # Return all frames with detections
# Connect the video input to the gallery update
video_input.change(update_gallery, inputs=video_input, outputs=gallery_output)
# Launch the interface
demo.launch()