Spaces:
Sleeping
Sleeping
import cv2 | |
import torch | |
import gradio as gr | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from ultralytics import YOLO | |
# Load YOLOv8 model | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model = YOLO('./data/best.pt') # Path to your model | |
model.to(device) | |
# Store frames with detected objects | |
frames_with_detections = [] | |
detection_counts = [] | |
# Define the function that processes the uploaded video | |
def process_video(video): | |
# video is now the file path string, not a file object | |
input_video = cv2.VideoCapture(video) # Directly pass the path to cv2.VideoCapture | |
# Get frame width, height, and fps from input video | |
frame_width = int(input_video.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
frame_height = int(input_video.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
fps = input_video.get(cv2.CAP_PROP_FPS) | |
# Resize to reduce computation (optional) | |
new_width, new_height = 640, 480 # Resize to 640x480 resolution | |
frame_width, frame_height = new_width, new_height | |
# Track detected objects by their bounding box coordinates | |
detected_boxes = set() | |
total_detections = 0 | |
while True: | |
# Read a frame from the video | |
ret, frame = input_video.read() | |
if not ret: | |
break # End of video | |
# Resize the frame to reduce computational load | |
frame = cv2.resize(frame, (new_width, new_height)) | |
# Perform inference on the frame | |
results = model(frame) # Automatically uses GPU if available | |
# Check if any object was detected | |
if len(results[0].boxes) > 0: # If there are detected objects | |
# Get the bounding boxes for each detected object | |
boxes = results[0].boxes.xyxy.cpu().numpy() # Get xyxy coordinates | |
# Loop through each detection and only show the frame for new objects | |
for box in boxes: | |
x1, y1, x2, y2 = box | |
detection_box = (x1, y1, x2, y2) | |
# Check if this box was already processed | |
if detection_box not in detected_boxes: | |
# Add the box to the set to avoid repeating the detection | |
detected_boxes.add(detection_box) | |
total_detections += 1 | |
# Annotate the frame with bounding boxes | |
annotated_frame = results[0].plot() # Plot the frame with bounding boxes | |
# Convert the annotated frame to RGB format for displaying | |
annotated_frame_rgb = cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB) | |
# Add this frame to the list of frames with detections | |
frames_with_detections.append(annotated_frame_rgb) | |
detection_counts.append(total_detections) | |
# Release resources | |
input_video.release() | |
# Return the frames with detections for display | |
return frames_with_detections | |
# Create a Gradio Blocks interface | |
with gr.Blocks() as demo: | |
# Define a file input for video upload | |
video_input = gr.Video(label="Upload Video") | |
# Define the output area to show processed frames | |
gallery_output = gr.Gallery(label="Detection Album").style(columns=3) # Display images in a row (album) | |
# Define the function to update frames in the album | |
def update_gallery(video): | |
detected_frames = process_video(video) | |
return detected_frames # Return all frames with detections | |
# Connect the video input to the gallery update | |
video_input.change(update_gallery, inputs=video_input, outputs=gallery_output) | |
# Launch the interface | |
demo.launch() | |