tarinmodel11 / app.py
nagasurendra's picture
Update app.py
0b0a1d1 verified
raw
history blame
12.6 kB
import cv2
import torch
import gradio as gr
import numpy as np
import os
import json
import logging
import matplotlib.pyplot as plt
from datetime import datetime
from collections import Counter
from typing import List, Dict, Any, Optional
from ultralytics import YOLO
import ultralytics
import time
# Set YOLO config directory
os.environ["YOLO_CONFIG_DIR"] = "/tmp/Ultralytics"
# Set up logging
logging.basicConfig(
filename="app.log",
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s"
)
# Directories
CAPTURED_FRAMES_DIR = "captured_frames"
OUTPUT_DIR = "outputs"
os.makedirs(CAPTURED_FRAMES_DIR, exist_ok=True)
os.makedirs(OUTPUT_DIR, exist_ok=True)
os.chmod(CAPTURED_FRAMES_DIR, 0o777)
os.chmod(OUTPUT_DIR, 0o777)
# Global variables
log_entries: List[str] = []
detected_counts: List[int] = []
detected_issues: List[str] = []
gps_coordinates: List[List[float]] = []
last_metrics: Dict[str, Any] = {}
frame_count: int = 0
SAVE_IMAGE_INTERVAL = 1 # Save every frame with detections
# Debug: Check environment
print(f"Torch version: {torch.__version__}")
print(f"Gradio version: {gr.__version__}")
print(f"Ultralytics version: {ultralytics.__version__}")
print(f"CUDA available: {torch.cuda.is_available()}")
# Load custom YOLO model
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
model = YOLO('./data/best.pt').to(device)
if device == "cuda":
model.half() # Use half-precision (FP16)
print(f"Model classes: {model.names}")
# Mock service functions
def generate_map(gps_coords: List[List[float]], items: List[Dict[str, Any]]) -> str:
map_path = "map_temp.png"
plt.figure(figsize=(4, 4))
plt.scatter([x[1] for x in gps_coords], [x[0] for x in gps_coords], c='blue', label='GPS Points')
plt.title("Issue Locations Map")
plt.xlabel("Longitude")
plt.ylabel("Latitude")
plt.legend()
plt.savefig(map_path)
plt.close()
return map_path
def send_to_salesforce(data: Dict[str, Any]) -> None:
pass # Minimal mock
def update_metrics(detections: List[Dict[str, Any]]) -> Dict[str, Any]:
counts = Counter([det["label"] for det in detections])
return {
"items": [{"type": k, "count": v} for k, v in counts.items()],
"total_detections": len(detections),
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
def generate_line_chart() -> Optional[str]:
if not detected_counts:
return None
plt.figure(figsize=(4, 2))
plt.plot(detected_counts[-50:], marker='o', color='#FF8C00')
plt.title("Detections Over Time")
plt.xlabel("Frame")
plt.ylabel("Count")
plt.grid(True)
plt.tight_layout()
chart_path = "chart_temp.png"
plt.savefig(chart_path)
plt.close()
return chart_path
def process_video(video, resize_width=320, resize_height=240, frame_skip=5):
global frame_count, last_metrics, detected_counts, detected_issues, gps_coordinates, log_entries
frame_count = 0
detected_counts.clear()
detected_issues.clear()
gps_coordinates.clear()
log_entries.clear()
last_metrics = {}
if video is None:
log_entries.append("Error: No video uploaded")
logging.error("No video uploaded")
return "processed_output.mp4", json.dumps({"error": "No video uploaded"}, indent=2), "\n".join(log_entries), [], None, None
start_time = time.time()
cap = cv2.VideoCapture(video)
if not cap.isOpened():
log_entries.append("Error: Could not open video file")
logging.error("Could not open video file")
return "processed_output.mp4", json.dumps({"error": "Could not open video file"}, indent=2), "\n".join(log_entries), [], None, None
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
expected_duration = total_frames / fps if fps > 0 else 0
log_entries.append(f"Input video: {frame_width}x{frame_height}, {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds")
logging.info(f"Input video: {frame_width}x{frame_height}, {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds")
print(f"Input video: {frame_width}x{frame_height}, {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds")
out_width, out_height = resize_width, resize_height
output_path = "processed_output.mp4"
codecs = [('mp4v', '.mp4'), ('MJPG', '.avi'), ('XVID', '.avi')]
out = None
for codec, ext in codecs:
fourcc = cv2.VideoWriter_fourcc(*codec)
output_path = f"processed_output{ext}"
out = cv2.VideoWriter(output_path, fourcc, fps, (out_width, out_height))
if out.isOpened():
log_entries.append(f"Using codec: {codec}, output: {output_path}")
logging.info(f"Using codec: {codec}, output: {output_path}")
break
else:
log_entries.append(f"Failed to initialize codec: {codec}")
logging.warning(f"Failed to initialize codec: {codec}")
if not out or not out.isOpened():
log_entries.append("Error: All codecs failed to initialize video writer")
logging.error("All codecs failed to initialize video writer")
cap.release()
return "processed_output.mp4", json.dumps({"error": "All codecs failed"}, indent=2), "\n".join(log_entries), [], None, None
processed_frames = 0
all_detections = []
frame_times = []
detection_frame_count = 0
output_frame_count = 0
last_annotated_frame = None
while True:
ret, frame = cap.read()
if not ret:
break
frame_count += 1
if frame_count % frame_skip != 0:
continue
processed_frames += 1
frame Cheesecake = time.time()
frame = cv2.resize(frame, (out_width, out_height))
results = model(frame, verbose=False, conf=0.5, iou=0.7)
annotated_frame = results[0].plot()
# Calculate timestamp for the current frame
frame_timestamp = frame_count / fps if fps > 0 else 0
timestamp_str = f"{int(frame_timestamp // 60)}:{int(frame_timestamp % 60):02d}"
frame_detections = []
for detection in results[0].boxes:
cls = int(detection.cls)
conf = float(detection.conf)
box = detection.xyxy[0].cpu().numpy().astype(int).tolist()
label = model.names[cls]
if label != 'Crocodile': # Ignore irrelevant class
frame_detections.append({"label": label, "box": box, "conf": conf})
# Log detection with timestamp
log_message = f"Frame {frame_count} at {timestamp_str}: Detected {label} with confidence {conf:.2f}"
log_entries.append(log_message)
logging.info(log_message)
if frame_detections:
detection_frame_count += 1
if detection_frame_count % SAVE_IMAGE_INTERVAL == 0:
captured_frame_path = os.path.join(CAPTURED_FRAMES_DIR, f"detected_{frame_count}.jpg")
if not cv2.imwrite(captured_frame_path, annotated_frame):
log_entries.append(f"Error: Failed to save {captured_frame_path}")
logging.error(f"Failed to save {captured_frame_path}")
else:
detected_issues.append(captured_frame_path)
if len(detected_issues) > 100:
detected_issues.pop(0)
# Write frame and duplicates
out.write(annotated_frame)
output_frame_count += 1
last_annotated_frame = annotated_frame
if frame_skip > 1:
for _ in range(frame_skip - 1):
out.write(annotated_frame)
output_frame_count += 1
detected_counts.append(len(frame_detections))
gps_coord = [17.385044 + (frame_count * 0.0001), 78.486671 + (frame_count * 0.0001)]
gps_coordinates.append(gps_coord)
for det in frame_detections:
det["gps"] = gps_coord
det["timestamp"] = timestamp_str # Add timestamp to detection data
all_detections.extend(frame_detections)
frame_time = (time.time() - frame_start) * 1000
frame_times.append(frame_time)
detection_summary = {
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"video_timestamp": timestamp_str,
"frame": frame_count,
"longitudinal": sum(1 for det in frame_detections if det["label"] == "Longitudinal"),
"pothole": sum(1 for det in frame_detections if det["label"] == "Pothole"),
"transverse": sum(1 for det in frame_detections if det["label"] == "Transverse"),
"gps": gps_coord,
"processing_time_ms": frame_time
}
log_entries.append(json.dumps(detection_summary, indent=2))
if len(log_entries) > 50:
log_entries.pop(0)
# Pad remaining frames
while output_frame_count < total_frames and last_annotated_frame is not None:
out.write(last_annotated_frame)
output_frame_count += 1
last_metrics = update_metrics(all_detections)
send_to_salesforce({
"detections": all_detections,
"metrics": last_metrics,
"timestamp": detection_summary["timestamp"] if all_detections else datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"frame_count": frame_count,
"gps_coordinates": gps_coordinates[-1] if gps_coordinates else [0, 0]
})
cap.release()
out.release()
cap = cv2.VideoCapture(output_path)
output_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
output_fps = cap.get(cv2.CAP_PROP_FPS)
output_duration = output_frames / output_fps if output_fps > 0 else 0
cap.release()
total_time = time.time() - start_time
avg_frame_time = sum(frame_times) / len(frame_times) if frame_times else 0
log_entries.append(f"Output video: {output_frames} frames, {output_fps} FPS, {output_duration:.2f} seconds")
log_entries.append(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms, Detection frames: {detection_frame_count}, Output frames: {output_frame_count}")
logging.info(f"Output video: {output_frames} frames, {output_fps} FPS, {output_duration:.2f} seconds")
logging.info(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms, Detection frames: {detection_frame_count}, Output frames: {output_frame_count}")
print(f"Output video: {output_frames} frames, {output_fps} FPS, {output_duration:.2f} seconds")
print(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms, Detection frames: {detection_frame_count}, Output frames: {output_frame_count}")
chart_path = generate_line_chart()
map_path = generate_map(gps_coordinates[-5:], all_detections)
return (
output_path,
json.dumps(last_metrics, indent=2),
"\n".join(log_entries[-10:]),
detected_issues,
chart_path,
map_path
)
# Gradio interface
with gr.Blocks(theme=gr.themes.Soft(primary_hue="orange")) as iface:
gr.Markdown("# Road Defect Detection Dashboard")
with gr.Row():
with gr.Column(scale=3):
video_input = gr.Video(label="Upload Video")
width_slider = gr.Slider(320, 640, value=320, label="Output Width", step=1)
height_slider = gr.Slider(240, 480, value=240, label="Output Height", step=1)
skip_slider = gr.Slider(1, 10, value=5, label="Frame Skip", step=1)
process_btn = gr.Button("Process Video", variant="primary")
with gr.Column(scale=1):
metrics_output = gr.Textbox(label="Detection Metrics", lines=5, interactive=False)
with gr.Row():
video_output = gr.Video(label="Processed Video")
issue_gallery = gr.Gallery(label="Detected Issues", columns=4, height="auto", object_fit="contain")
with gr.Row():
chart_output = gr.Image(label="Detection Trend")
map_output = gr.Image(label="Issue Locations Map")
with gr.Row():
logs_output = gr.Textbox(label="Logs", lines=5, interactive=False)
process_btn.click(
process_video,
inputs=[video_input, width_slider, height_slider, skip_slider],
outputs=[video_output, metrics_output, logs_output, issue_gallery, chart_output, map_output]
)
if __name__ == "__main__":
iface.launch()