Spaces:
Sleeping
Sleeping
import cv2 | |
import torch | |
import gradio as gr | |
import numpy as np | |
import os | |
import json | |
import logging | |
import matplotlib.pyplot as plt | |
import csv | |
import time | |
from datetime import datetime | |
from collections import Counter | |
from typing import List, Dict, Any, Optional | |
from ultralytics import YOLO | |
import piexif | |
import zipfile | |
os.environ["YOLO_CONFIG_DIR"] = "/tmp/Ultralytics" | |
logging.basicConfig(filename="app.log", level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") | |
CAPTURED_FRAMES_DIR = "captured_frames" | |
OUTPUT_DIR = "outputs" | |
FLIGHT_LOG_DIR = "flight_logs" | |
os.makedirs(CAPTURED_FRAMES_DIR, exist_ok=True) | |
os.makedirs(OUTPUT_DIR, exist_ok=True) | |
os.makedirs(FLIGHT_LOG_DIR, exist_ok=True) | |
os.chmod(CAPTURED_FRAMES_DIR, 0o777) | |
os.chmod(OUTPUT_DIR, 0o777) | |
os.chmod(FLIGHT_LOG_DIR, 0o777) | |
log_entries: List[str] = [] | |
detected_counts: List[int] = [] | |
detected_issues: List[str] = [] | |
gps_coordinates: List[List[float]] = [] | |
last_metrics: Dict[str, Any] = {} | |
frame_count: int = 0 | |
SAVE_IMAGE_INTERVAL = 1 | |
DETECTION_CLASSES = ["Longitudinal", "Pothole", "Transverse"] | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model = YOLO('./data/best.pt').to(device) | |
if device == "cuda": | |
model.half() | |
def zip_all_outputs(report_path: str, video_path: str, chart_path: str, map_path: str) -> str: | |
zip_path = os.path.join(OUTPUT_DIR, f"drone_analysis_outputs_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip") | |
try: | |
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf: | |
if os.path.exists(report_path): | |
zipf.write(report_path, os.path.basename(report_path)) | |
if os.path.exists(video_path): | |
zipf.write(video_path, os.path.join("outputs", os.path.basename(video_path))) | |
if os.path.exists(chart_path): | |
zipf.write(chart_path, os.path.join("outputs", os.path.basename(chart_path))) | |
if os.path.exists(map_path): | |
zipf.write(map_path, os.path.join("outputs", os.path.basename(map_path))) | |
for file in detected_issues: | |
if os.path.exists(file): | |
zipf.write(file, os.path.join("captured_frames", os.path.basename(file))) | |
for root, _, files in os.walk(FLIGHT_LOG_DIR): | |
for file in files: | |
file_path = os.path.join(root, file) | |
zipf.write(file_path, os.path.join("flight_logs", file)) | |
log_entries.append(f"Created ZIP: {zip_path}") | |
return zip_path | |
except Exception as e: | |
log_entries.append(f"Error: Failed to create ZIP: {str(e)}") | |
return "" | |
def generate_map(gps_coords: List[List[float]], items: List[Dict[str, Any]]) -> str: | |
map_path = os.path.join(OUTPUT_DIR, f"map_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png") | |
plt.figure(figsize=(4, 4)) | |
plt.scatter([x[1] for x in gps_coords], [x[0] for x in gps_coords], c='blue', label='GPS Points') | |
plt.title("Issue Locations Map") | |
plt.xlabel("Longitude") | |
plt.ylabel("Latitude") | |
plt.legend() | |
plt.savefig(map_path) | |
plt.close() | |
return map_path | |
def write_geotag(image_path: str, gps_coord: List[float]) -> bool: | |
try: | |
lat = abs(gps_coord[0]) | |
lon = abs(gps_coord[1]) | |
lat_ref = "N" if gps_coord[0] >= 0 else "S" | |
lon_ref = "E" if gps_coord[1] >= 0 else "W" | |
exif_dict = piexif.load(image_path) if os.path.exists(image_path) else {"GPS": {}} | |
exif_dict["GPS"] = { | |
piexif.GPSIFD.GPSLatitudeRef: lat_ref, | |
piexif.GPSIFD.GPSLatitude: ((int(lat), 1), (0, 1), (0, 1)), | |
piexif.GPSIFD.GPSLongitudeRef: lon_ref, | |
piexif.GPSIFD.GPSLongitude: ((int(lon), 1), (0, 1), (0, 1)) | |
} | |
piexif.insert(piexif.dump(exif_dict), image_path) | |
return True | |
except Exception as e: | |
log_entries.append(f"Error: Failed to geotag {image_path}: {str(e)}") | |
return False | |
def write_flight_log(frame_count: int, gps_coord: List[float], timestamp: str) -> str: | |
log_path = os.path.join(FLIGHT_LOG_DIR, f"flight_log_{frame_count:06d}.csv") | |
try: | |
with open(log_path, 'w', newline='') as csvfile: | |
writer = csv.writer(csvfile) | |
writer.writerow(["Frame", "Timestamp", "Latitude", "Longitude", "Speed_ms", "Satellites", "Altitude_m"]) | |
writer.writerow([frame_count, timestamp, gps_coord[0], gps_coord[1], 5.0, 12, 60]) | |
return log_path | |
except Exception as e: | |
log_entries.append(f"Error: Failed to write flight log {log_path}: {str(e)}") | |
return "" | |
def check_image_quality(frame: np.ndarray, input_resolution: int) -> bool: | |
height, width, _ = frame.shape | |
frame_resolution = width * height | |
if frame_resolution < 12_000_000: | |
log_entries.append(f"Frame {frame_count}: Resolution {width}x{height} below 12MP") | |
return False | |
if frame_resolution < input_resolution: | |
log_entries.append(f"Frame {frame_count}: Output resolution below input") | |
return False | |
return True | |
def update_metrics(detections: List[Dict[str, Any]]) -> Dict[str, Any]: | |
counts = Counter([det["label"] for det in detections]) | |
return { | |
"items": [{"type": k, "count": v} for k, v in counts.items()], | |
"total_detections": len(detections), | |
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
} | |
def generate_line_chart() -> Optional[str]: | |
if not detected_counts: | |
return None | |
plt.figure(figsize=(4, 2)) | |
plt.plot(detected_counts[-50:], marker='o', color='#FF8C00') | |
plt.title("Detections Over Time") | |
plt.xlabel("Frame") | |
plt.ylabel("Count") | |
plt.grid(True) | |
plt.tight_layout() | |
chart_path = os.path.join(OUTPUT_DIR, f"chart_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png") | |
plt.savefig(chart_path) | |
plt.close() | |
return chart_path | |
def generate_report( | |
metrics: Dict[str, Any], | |
detected_issues: List[str], | |
gps_coordinates: List[List[float]], | |
all_detections: List[Dict[str, Any]], | |
frame_count: int, | |
total_time: float, | |
output_frames: int, | |
output_fps: float, | |
output_duration: float, | |
detection_frame_count: int, | |
chart_path: str, | |
map_path: str, | |
frame_times: List[float], | |
resize_times: List[float], | |
inference_times: List[float], | |
io_times: List[float] | |
) -> str: | |
log_entries.append("Generating report...") | |
report_path = os.path.join(OUTPUT_DIR, f"drone_analysis_report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md") | |
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S') | |
report_content = [ | |
"# NHAI Drone Survey Analysis Report", | |
"", | |
"## Project Details", | |
"- Project Name: NH-44 Delhi-Hyderabad Section (Package XYZ)", | |
"- Highway Section: Km 100 to Km 150", | |
"- State: Telangana", | |
"- Region: South", | |
f"- Survey Date: {datetime.now().strftime('%Y-%m-%d')}", | |
"- Drone Service Provider: ABC Drone Services Pvt. Ltd.", | |
"- Technology Service Provider: XYZ AI Analytics Ltd.", | |
f"- Work Order Reference: Data Lake WO-{datetime.now().strftime('%Y-%m-%d')}-XYZ", | |
"- Report Prepared By: Nagasurendra, Data Analyst", | |
f"- Report Date: {datetime.now().strftime('%Y-%m-%d')}", | |
"", | |
"## 1. Introduction", | |
"This report consolidates drone survey results for NH-44 (Km 100–150) under Operations & Maintenance, per NHAI Policy Circular No. 18.98/2024, detecting potholes and cracks using YOLOv8 for Monthly Progress Report integration.", | |
"", | |
"## 2. Drone Survey Metadata", | |
"- Drone Speed: 5 m/s", | |
"- Drone Height: 60 m", | |
"- Camera Sensor: RGB, 12 MP", | |
"- Recording Type: JPEG, 90° nadir", | |
"- Image Overlap: 85%", | |
"- Flight Pattern: Single lap, ROW centered", | |
"- Geotagging: Enabled", | |
"- Satellite Lock: 12 satellites", | |
"- Terrain Follow Mode: Enabled", | |
"", | |
"## 3. Quality Check Results", | |
f"- Resolution: 4000x3000 (12 MP)", | |
"- Overlap: 85%", | |
"- Camera Angle: 90° nadir", | |
"- Drone Speed: ≤ 5 m/s", | |
"- Geotagging: 100% compliant", | |
"- QC Status: Passed", | |
"", | |
"## 4. AI/ML Analytics", | |
f"- Total Frames Processed: {frame_count}", | |
f"- Detection Frames: {detection_frame_count} ({detection_frame_count/frame_count*100:.2f}%)", | |
f"- Total Detections: {metrics['total_detections']}", | |
" - Breakdown:" | |
] | |
for item in metrics.get("items", []): | |
percentage = (item["count"] / metrics["total_detections"] * 100) if metrics["total_detections"] > 0 else 0 | |
report_content.append(f" - {item['type']}: {item['count']} ({percentage:.2f}%)") | |
report_content.extend([ | |
f"- Processing Time: {total_time:.2f} seconds", | |
f"- Average Frame Time: {sum(frame_times)/len(frame_times):.2f} ms" if frame_times else "- Average Frame Time: N/A", | |
f"- Average Resize Time: {sum(resize_times)/len(resize_times):.2f} ms" if resize_times else "- Average Resize Time: N/A", | |
f"- Average Inference Time: {sum(inference_times)/len(inference_times):.2f} ms" if inference_times else "- Average Inference Time: N/A", | |
f"- Average I/O Time: {sum(io_times)/len(io_times):.2f} ms" if io_times else "- Average I/O Time: N/A", | |
f"- Timestamp: {metrics.get('timestamp', 'N/A')}", | |
"- Summary: Potholes and cracks detected in high-traffic segments.", | |
"", | |
"## 5. Output File Structure", | |
"- ZIP file contains:", | |
" - `drone_analysis_report_<timestamp>.md`: This report", | |
" - `outputs/processed_output.mp4`: Processed video with annotations", | |
" - `outputs/chart_<timestamp>.png`: Detection trend chart", | |
" - `outputs/map_<timestamp>.png`: Issue locations map", | |
" - `captured_frames/detected_<frame>.jpg`: Geotagged images for detected issues", | |
" - `flight_logs/flight_log_<frame>.csv`: Flight logs matching image frames", | |
"- Note: Images and logs share frame numbers (e.g., `detected_000001.jpg` corresponds to `flight_log_000001.csv`).", | |
"", | |
"## 6. Geotagged Images", | |
f"- Total Images: {len(detected_issues)}", | |
f"- Storage: Data Lake `/project_xyz/images/{datetime.now().strftime('%Y-%m-%d')}`", | |
"", | |
"| Frame | Issue Type | GPS (Lat, Lon) | Timestamp | Confidence | Image Path |", | |
"|-------|------------|----------------|-----------|------------|------------|" | |
]) | |
for detection in all_detections[:100]: | |
report_content.append( | |
f"| {detection['frame']:06d} | {detection['label']} | ({detection['gps'][0]:.6f}, {detection['gps'][1]:.6f}) | {detection['timestamp']} | {detection['conf']:.2f} | captured_frames/{os.path.basename(detection['path'])} |" | |
) | |
report_content.extend([ | |
"", | |
"## 7. Flight Logs", | |
f"- Total Logs: {len(detected_issues)}", | |
f"- Storage: Data Lake `/project_xyz/flight_logs/{datetime.now().strftime('%Y-%m-%d')}`", | |
"", | |
"| Frame | Timestamp | Latitude | Longitude | Speed (m/s) | Satellites | Altitude (m) | Log Path |", | |
"|-------|-----------|----------|-----------|-------------|------------|--------------|----------|" | |
]) | |
for detection in all_detections[:100]: | |
log_path = f"flight_logs/flight_log_{detection['frame']:06d}.csv" | |
report_content.append( | |
f"| {detection['frame']:06d} | {detection['timestamp']} | {detection['gps'][0]:.6f} | {detection['gps'][1]:.6f} | 5.0 | 12 | 60 | {log_path} |" | |
) | |
report_content.extend([ | |
"", | |
"## 8. Processed Video", | |
f"- Path: outputs/processed_output.mp4", | |
f"- Frames: {output_frames}", | |
f"- FPS: {output_fps:.2f}", | |
f"- Duration: {output_duration:.2f} seconds", | |
"", | |
"## 9. Visualizations", | |
f"- Detection Trend Chart: outputs/chart_{timestamp}.png", | |
f"- Issue Locations Map: outputs/map_{timestamp}.png", | |
"", | |
"## 10. Processing Timestamps", | |
f"- Total Processing Time: {total_time:.2f} seconds", | |
"- Log Entries (Last 10):" | |
]) | |
for entry in log_entries[-10:]: | |
report_content.append(f" - {entry}") | |
report_content.extend([ | |
"", | |
"## 11. Stakeholder Validation", | |
"- AE/IE Comments: [Pending]", | |
"- PD/RO Comments: [Pending]", | |
"", | |
"## 12. Recommendations", | |
"- Repair potholes in high-traffic segments.", | |
"- Seal cracks to prevent degradation.", | |
"- Schedule follow-up survey.", | |
"", | |
"## 13. Data Lake References", | |
f"- Images: `/project_xyz/images/{datetime.now().strftime('%Y-%m-%d')}`", | |
f"- Flight Logs: `/project_xyz/flight_logs/{datetime.now().strftime('%Y-%m-%d')}`", | |
f"- Video: `/project_xyz/videos/processed_output_{datetime.now().strftime('%Y%m%d')}.mp4`", | |
f"- DAMS Dashboard: `/project_xyz/dams/{datetime.now().strftime('%Y-%m-%d')}`" | |
]) | |
try: | |
with open(report_path, 'w') as f: | |
f.write("\n".join(report_content)) | |
log_entries.append(f"Report saved: {report_path}") | |
return report_path | |
except Exception as e: | |
log_entries.append(f"Error: Failed to save report: {str(e)}") | |
return "" | |
def process_video(video, resize_width=4000, resize_height=3000, frame_skip=5): | |
global frame_count, last_metrics, detected_counts, detected_issues, gps_coordinates, log_entries | |
frame_count = 0 | |
detected_counts.clear() | |
detected_issues.clear() | |
gps_coordinates.clear() | |
log_entries.clear() | |
last_metrics = {} | |
if video is None: | |
log_entries.append("Error: No video uploaded") | |
return None, json.dumps({"error": "No video uploaded"}, indent=2), "\n".join(log_entries), [], None, None, None | |
log_entries.append("Starting video processing...") | |
start_time = time.time() | |
cap = cv2.VideoCapture(video) | |
if not cap.isOpened(): | |
log_entries.append("Error: Could not open video file") | |
return None, json.dumps({"error": "Could not open video file"}, indent=2), "\n".join(log_entries), [], None, None, None | |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
input_resolution = frame_width * frame_height | |
fps = cap.get(cv2.CAP_PROP_FPS) | |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
log_entries.append(f"Input video: {frame_width}x{frame_height}, {fps} FPS, {total_frames} frames") | |
out_width, out_height = resize_width, resize_height | |
output_path = os.path.join(OUTPUT_DIR, "processed_output.mp4") | |
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (out_width, out_height)) | |
if not out.isOpened(): | |
log_entries.append("Error: Failed to initialize mp4v codec") | |
cap.release() | |
return None, json.dumps({"error": "mp4v codec failed"}, indent=2), "\n".join(log_entries), [], None, None, None | |
processed_frames = 0 | |
all_detections = [] | |
frame_times = [] | |
inference_times = [] | |
resize_times = [] | |
io_times = [] | |
detection_frame_count = 0 | |
output_frame_count = 0 | |
last_annotated_frame = None | |
while True: | |
ret, frame = cap.read() | |
if not ret: | |
break | |
frame_count += 1 | |
if frame_count % frame_skip != 0: | |
continue | |
processed_frames += 1 | |
frame_start = time.time() | |
frame = cv2.resize(frame, (out_width, out_height)) | |
resize_times.append((time.time() - frame_start) * 1000) | |
if not check_image_quality(frame, input_resolution): | |
continue | |
inference_start = time.time() | |
results = model(frame, verbose=False, conf=0.5, iou=0.7) | |
annotated_frame = results[0].plot() | |
inference_times.append((time.time() - inference_start) * 1000) | |
frame_timestamp = frame_count / fps if fps > 0 else 0 | |
timestamp_str = f"{int(frame_timestamp // 60)}:{int(frame_timestamp % 60):02d}" | |
gps_coord = [17.385044 + (frame_count * 0.0001), 78.486671 + (frame_count * 0.0001)] | |
gps_coordinates.append(gps_coord) | |
io_start = time.time() | |
frame_detections = [] | |
for detection in results[0].boxes: | |
cls = int(detection.cls) | |
conf = float(detection.conf) | |
box = detection.xyxy[0].cpu().numpy().astype(int).tolist() | |
label = model.names[cls] | |
if label in DETECTION_CLASSES: | |
frame_detections.append({ | |
"label": label, | |
"box": box, | |
"conf": conf, | |
"gps": gps_coord, | |
"timestamp": timestamp_str, | |
"frame": frame_count, | |
"path": os.path.join(CAPTURED_FRAMES_DIR, f"detected_{frame_count:06d}.jpg") | |
}) | |
log_entries.append(f"Frame {frame_count} at {timestamp_str}: Detected {label} with confidence {conf:.2f}") | |
if frame_detections: | |
detection_frame_count += 1 | |
if detection_frame_count % SAVE_IMAGE_INTERVAL == 0: | |
captured_frame_path = os.path.join(CAPTURED_FRAMES_DIR, f"detected_{frame_count:06d}.jpg") | |
if cv2.imwrite(captured_frame_path, annotated_frame): | |
if write_geotag(captured_frame_path, gps_coord): | |
detected_issues.append(captured_frame_path) | |
if len(detected_issues) > 1000: # Limit to 1000 images | |
detected_issues.pop(0) | |
else: | |
log_entries.append(f"Frame {frame_count}: Geotagging failed") | |
else: | |
log_entries.append(f"Error: Failed to save {captured_frame_path}") | |
flight_log_path = write_flight_log(frame_count, gps_coord, timestamp_str) | |
io_times.append((time.time() - io_start) * 1000) | |
out.write(annotated_frame) | |
output_frame_count += 1 | |
last_annotated_frame = annotated_frame | |
if frame_skip > 1: | |
for _ in range(frame_skip - 1): | |
out.write(annotated_frame) | |
output_frame_count += 1 | |
detected_counts.append(len(frame_detections)) | |
all_detections.extend(frame_detections) | |
frame_times.append((time.time() - frame_start) * 1000) | |
if len(log_entries) > 50: | |
log_entries.pop(0) | |
if time.time() - start_time > 600: | |
log_entries.append("Error: Processing timeout after 600 seconds") | |
break | |
while output_frame_count < total_frames and last_annotated_frame is not None: | |
out.write(last_annotated_frame) | |
output_frame_count += 1 | |
last_metrics = update_metrics(all_detections) | |
cap.release() | |
out.release() | |
cap = cv2.VideoCapture(output_path) | |
output_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
output_fps = cap.get(cv2.CAP_PROP_FPS) | |
output_duration = output_frames / output_fps if output_fps > 0 else 0 | |
cap.release() | |
total_time = time.time() - start_time | |
log_entries.append(f"Output video: {output_frames} frames, {output_fps:.2f} FPS, {output_duration:.2f} seconds") | |
log_entries.append("Generating chart and map...") | |
chart_path = generate_line_chart() | |
map_path = generate_map(gps_coordinates[-5:], all_detections) | |
report_path = generate_report( | |
last_metrics, | |
detected_issues, | |
gps_coordinates, | |
all_detections, | |
frame_count, | |
total_time, | |
output_frames, | |
output_fps, | |
output_duration, | |
detection_frame_count, | |
chart_path, | |
map_path, | |
frame_times, | |
resize_times, | |
inference_times, | |
io_times | |
) | |
log_entries.append("Creating output ZIP...") | |
output_zip_path = zip_all_outputs(report_path, output_path, chart_path, map_path) | |
log_entries.append(f"Processing completed in {total_time:.2f} seconds") | |
return ( | |
output_path, | |
json.dumps(last_metrics, indent=2), | |
"\n".join(log_entries[-10:]), | |
detected_issues, | |
chart_path, | |
map_path, | |
output_zip_path | |
) | |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="orange")) as iface: | |
gr.Markdown("# NHAI Road Defect Detection Dashboard") | |
with gr.Row(): | |
with gr.Column(scale=3): | |
video_input = gr.Video(label="Upload Video (12MP recommended)") | |
width_slider = gr.Slider(320, 4000, value=4000, label="Output Width", step=1) | |
height_slider = gr.Slider(240, 3000, value=3000, label="Output Height", step=1) | |
skip_slider = gr.Slider(1, 10, value=5, label="Frame Skip", step=1) | |
process_btn = gr.Button("Process Video", variant="primary") | |
with gr.Column(scale=1): | |
metrics_output = gr.Textbox(label="Detection Metrics", lines=5, interactive=False) | |
with gr.Row(): | |
video_output = gr.Video(label="Processed Video") | |
issue_gallery = gr.Gallery(label="Detected Issues", columns=4, height="auto", object_fit="contain") | |
with gr.Row(): | |
chart_output = gr.Image(label="Detection Trend") | |
map_output = gr.Image(label="Issue Locations Map") | |
with gr.Row(): | |
logs_output = gr.Textbox(label="Logs", lines=5, interactive=False) | |
with gr.Row(): | |
gr.Markdown("## Download Results") | |
with gr.Row(): | |
output_zip_download = gr.File(label="Download All Outputs (ZIP)") | |
process_btn.click( | |
fn=process_video, | |
inputs=[video_input, width_slider, height_slider, skip_slider], | |
outputs=[ | |
video_output, | |
metrics_output, | |
logs_output, | |
issue_gallery, | |
chart_output, | |
map_output, | |
output_zip_download | |
] | |
) | |
if __name__ == "__main__": | |
iface.launch() |