Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -11,23 +11,12 @@ from datetime import datetime
|
|
11 |
from collections import Counter
|
12 |
from typing import List, Dict, Any, Optional
|
13 |
from ultralytics import YOLO
|
14 |
-
import ultralytics
|
15 |
-
import time
|
16 |
import piexif
|
17 |
import zipfile
|
18 |
-
import shutil
|
19 |
|
20 |
-
# Set YOLO config directory
|
21 |
os.environ["YOLO_CONFIG_DIR"] = "/tmp/Ultralytics"
|
|
|
22 |
|
23 |
-
# Set up logging
|
24 |
-
logging.basicConfig(
|
25 |
-
filename="app.log",
|
26 |
-
level=logging.INFO,
|
27 |
-
format="%(asctime)s - %(levelname)s - %(message)s"
|
28 |
-
)
|
29 |
-
|
30 |
-
# Directories
|
31 |
CAPTURED_FRAMES_DIR = "captured_frames"
|
32 |
OUTPUT_DIR = "outputs"
|
33 |
FLIGHT_LOG_DIR = "flight_logs"
|
@@ -38,7 +27,6 @@ os.chmod(CAPTURED_FRAMES_DIR, 0o777)
|
|
38 |
os.chmod(OUTPUT_DIR, 0o777)
|
39 |
os.chmod(FLIGHT_LOG_DIR, 0o777)
|
40 |
|
41 |
-
# Global variables
|
42 |
log_entries: List[str] = []
|
43 |
detected_counts: List[int] = []
|
44 |
detected_issues: List[str] = []
|
@@ -46,27 +34,14 @@ gps_coordinates: List[List[float]] = []
|
|
46 |
last_metrics: Dict[str, Any] = {}
|
47 |
frame_count: int = 0
|
48 |
SAVE_IMAGE_INTERVAL = 1
|
49 |
-
|
50 |
-
# Detection classes
|
51 |
DETECTION_CLASSES = ["Longitudinal", "Pothole", "Transverse"]
|
52 |
|
53 |
-
# Debug: Check environment
|
54 |
-
print(f"Torch version: {torch.__version__}")
|
55 |
-
print(f"Gradio version: {gr.__version__}")
|
56 |
-
print(f"Ultralytics version: {ultralytics.__version__}")
|
57 |
-
print(f"CUDA available: {torch.cuda.is_available()}")
|
58 |
-
|
59 |
-
# Load custom YOLO model
|
60 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
61 |
-
print(f"Using device: {device}")
|
62 |
model = YOLO('./data/best.pt').to(device)
|
63 |
if device == "cuda":
|
64 |
model.half()
|
65 |
-
print(f"Model classes: {model.names}")
|
66 |
|
67 |
-
# Function to zip all files in a directory
|
68 |
def zip_directory(folder_path: str, zip_path: str) -> str:
|
69 |
-
"""Zip all files in a directory."""
|
70 |
try:
|
71 |
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
72 |
for root, _, files in os.walk(folder_path):
|
@@ -80,7 +55,6 @@ def zip_directory(folder_path: str, zip_path: str) -> str:
|
|
80 |
log_entries.append(f"Error: Failed to zip {folder_path}: {str(e)}")
|
81 |
return ""
|
82 |
|
83 |
-
# Function to generate the map of detected issues' locations
|
84 |
def generate_map(gps_coords: List[List[float]], items: List[Dict[str, Any]]) -> str:
|
85 |
map_path = os.path.join(OUTPUT_DIR, "map_temp.png")
|
86 |
plt.figure(figsize=(4, 4))
|
@@ -93,7 +67,6 @@ def generate_map(gps_coords: List[List[float]], items: List[Dict[str, Any]]) ->
|
|
93 |
plt.close()
|
94 |
return map_path
|
95 |
|
96 |
-
# Function to geotag the image with GPS coordinates
|
97 |
def write_geotag(image_path: str, gps_coord: List[float]) -> bool:
|
98 |
try:
|
99 |
lat = abs(gps_coord[0])
|
@@ -114,7 +87,6 @@ def write_geotag(image_path: str, gps_coord: List[float]) -> bool:
|
|
114 |
log_entries.append(f"Error: Failed to geotag {image_path}: {str(e)}")
|
115 |
return False
|
116 |
|
117 |
-
# Function to write flight logs
|
118 |
def write_flight_log(frame_count: int, gps_coord: List[float], timestamp: str) -> str:
|
119 |
log_path = os.path.join(FLIGHT_LOG_DIR, f"flight_log_{frame_count:06d}.csv")
|
120 |
try:
|
@@ -128,7 +100,17 @@ def write_flight_log(frame_count: int, gps_coord: List[float], timestamp: str) -
|
|
128 |
log_entries.append(f"Error: Failed to write flight log {log_path}: {str(e)}")
|
129 |
return ""
|
130 |
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
def update_metrics(detections: List[Dict[str, Any]]) -> Dict[str, Any]:
|
133 |
counts = Counter([det["label"] for det in detections])
|
134 |
return {
|
@@ -137,7 +119,6 @@ def update_metrics(detections: List[Dict[str, Any]]) -> Dict[str, Any]:
|
|
137 |
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
138 |
}
|
139 |
|
140 |
-
# Function to generate detection trend chart
|
141 |
def generate_line_chart() -> Optional[str]:
|
142 |
if not detected_counts:
|
143 |
return None
|
@@ -153,49 +134,130 @@ def generate_line_chart() -> Optional[str]:
|
|
153 |
plt.close()
|
154 |
return chart_path
|
155 |
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
-
|
|
|
|
|
|
|
|
|
193 |
except Exception as e:
|
194 |
-
logging.error(f"
|
195 |
-
log_entries.append(f"Error
|
196 |
return ""
|
197 |
|
198 |
-
# Video processing function
|
199 |
def process_video(video, resize_width=4000, resize_height=3000, frame_skip=5):
|
200 |
global frame_count, last_metrics, detected_counts, detected_issues, gps_coordinates, log_entries
|
201 |
frame_count = 0
|
@@ -208,24 +270,20 @@ def process_video(video, resize_width=4000, resize_height=3000, frame_skip=5):
|
|
208 |
if video is None:
|
209 |
log_entries.append("Error: No video uploaded")
|
210 |
logging.error("No video uploaded")
|
211 |
-
return None, json.dumps({"error": "No video uploaded"}, indent=2), "\n".join(log_entries), [], None, None, None
|
212 |
|
213 |
start_time = time.time()
|
214 |
cap = cv2.VideoCapture(video)
|
215 |
if not cap.isOpened():
|
216 |
log_entries.append("Error: Could not open video file")
|
217 |
logging.error("Could not open video file")
|
218 |
-
return None, json.dumps({"error": "Could not open video file"}, indent=2), "\n".join(log_entries), [], None, None, None
|
219 |
|
220 |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
221 |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
222 |
input_resolution = frame_width * frame_height
|
223 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
224 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
225 |
-
expected_duration = total_frames / fps if fps > 0 else 0
|
226 |
-
log_entries.append(f"Input video: {frame_width}x{frame_height} ({input_resolution/1e6:.2f}MP), {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds, Frame skip: {frame_skip}")
|
227 |
-
logging.info(f"Input video: {frame_width}x{frame_height} ({input_resolution/1e6:.2f}MP), {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds, Frame skip: {frame_skip}")
|
228 |
-
print(f"Input video: {frame_width}x{frame_height} ({input_resolution/1e6:.2f}MP), {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds, Frame skip: {frame_skip}")
|
229 |
|
230 |
out_width, out_height = resize_width, resize_height
|
231 |
output_path = os.path.join(OUTPUT_DIR, "processed_output.mp4")
|
@@ -234,7 +292,7 @@ def process_video(video, resize_width=4000, resize_height=3000, frame_skip=5):
|
|
234 |
log_entries.append("Error: Failed to initialize mp4v codec")
|
235 |
logging.error("Failed to initialize mp4v codec")
|
236 |
cap.release()
|
237 |
-
return None, json.dumps({"error": "mp4v codec failed"}, indent=2), "\n".join(log_entries), [], None, None, None
|
238 |
|
239 |
processed_frames = 0
|
240 |
all_detections = []
|
@@ -245,12 +303,6 @@ def process_video(video, resize_width=4000, resize_height=3000, frame_skip=5):
|
|
245 |
detection_frame_count = 0
|
246 |
output_frame_count = 0
|
247 |
last_annotated_frame = None
|
248 |
-
data_lake_submission = {
|
249 |
-
"images": [],
|
250 |
-
"flight_logs": [],
|
251 |
-
"analytics": [],
|
252 |
-
"metrics": {}
|
253 |
-
}
|
254 |
|
255 |
while True:
|
256 |
ret, frame = cap.read()
|
@@ -262,16 +314,12 @@ def process_video(video, resize_width=4000, resize_height=3000, frame_skip=5):
|
|
262 |
processed_frames += 1
|
263 |
frame_start = time.time()
|
264 |
|
265 |
-
# Resize
|
266 |
-
resize_start = time.time()
|
267 |
frame = cv2.resize(frame, (out_width, out_height))
|
268 |
-
resize_times.append((time.time() -
|
269 |
|
270 |
if not check_image_quality(frame, input_resolution):
|
271 |
-
log_entries.append(f"Frame {frame_count}: Skipped due to low resolution")
|
272 |
continue
|
273 |
|
274 |
-
# Inference
|
275 |
inference_start = time.time()
|
276 |
results = model(frame, verbose=False, conf=0.5, iou=0.7)
|
277 |
annotated_frame = results[0].plot()
|
@@ -296,11 +344,12 @@ def process_video(video, resize_width=4000, resize_height=3000, frame_skip=5):
|
|
296 |
"box": box,
|
297 |
"conf": conf,
|
298 |
"gps": gps_coord,
|
299 |
-
"timestamp": timestamp_str
|
|
|
|
|
300 |
})
|
301 |
-
|
302 |
-
|
303 |
-
logging.info(log_message)
|
304 |
|
305 |
if frame_detections:
|
306 |
detection_frame_count += 1
|
@@ -309,12 +358,6 @@ def process_video(video, resize_width=4000, resize_height=3000, frame_skip=5):
|
|
309 |
if cv2.imwrite(captured_frame_path, annotated_frame):
|
310 |
if write_geotag(captured_frame_path, gps_coord):
|
311 |
detected_issues.append(captured_frame_path)
|
312 |
-
data_lake_submission["images"].append({
|
313 |
-
"path": captured_frame_path,
|
314 |
-
"frame": frame_count,
|
315 |
-
"gps": gps_coord,
|
316 |
-
"timestamp": timestamp_str
|
317 |
-
})
|
318 |
if len(detected_issues) > 100:
|
319 |
detected_issues.pop(0)
|
320 |
else:
|
@@ -324,12 +367,6 @@ def process_video(video, resize_width=4000, resize_height=3000, frame_skip=5):
|
|
324 |
logging.error(f"Failed to save {captured_frame_path}")
|
325 |
|
326 |
flight_log_path = write_flight_log(frame_count, gps_coord, timestamp_str)
|
327 |
-
if flight_log_path:
|
328 |
-
data_lake_submission["flight_logs"].append({
|
329 |
-
"path": flight_log_path,
|
330 |
-
"frame": frame_count
|
331 |
-
})
|
332 |
-
|
333 |
io_times.append((time.time() - io_start) * 1000)
|
334 |
|
335 |
out.write(annotated_frame)
|
@@ -343,9 +380,7 @@ def process_video(video, resize_width=4000, resize_height=3000, frame_skip=5):
|
|
343 |
detected_counts.append(len(frame_detections))
|
344 |
all_detections.extend(frame_detections)
|
345 |
|
346 |
-
|
347 |
-
frame_times.append(frame_time)
|
348 |
-
log_entries.append(f"Frame {frame_count}: Processed in {frame_time:.2f} ms (Resize: {resize_times[-1]:.2f} ms, Inference: {inference_times[-1]:.2f} ms, I/O: {io_times[-1]:.2f} ms)")
|
349 |
if len(log_entries) > 50:
|
350 |
log_entries.pop(0)
|
351 |
|
@@ -359,19 +394,6 @@ def process_video(video, resize_width=4000, resize_height=3000, frame_skip=5):
|
|
359 |
output_frame_count += 1
|
360 |
|
361 |
last_metrics = update_metrics(all_detections)
|
362 |
-
data_lake_submission["metrics"] = last_metrics
|
363 |
-
data_lake_submission["frame_count"] = frame_count
|
364 |
-
data_lake_submission["gps_coordinates"] = gps_coordinates[-1] if gps_coordinates else [0, 0]
|
365 |
-
|
366 |
-
submission_json_path = os.path.join(OUTPUT_DIR, "data_lake_submission.json")
|
367 |
-
try:
|
368 |
-
with open(submission_json_path, 'w') as f:
|
369 |
-
json.dump(data_lake_submission, f, indent=2)
|
370 |
-
log_entries.append(f"Submission JSON saved: {submission_json_path}")
|
371 |
-
logging.info(f"Submission JSON saved: {submission_json_path}")
|
372 |
-
except Exception as e:
|
373 |
-
log_entries.append(f"Error: Failed to save submission JSON: {str(e)}")
|
374 |
-
logging.error(f"Failed to save submission JSON: {str(e)}")
|
375 |
|
376 |
cap.release()
|
377 |
out.release()
|
@@ -383,37 +405,42 @@ def process_video(video, resize_width=4000, resize_height=3000, frame_skip=5):
|
|
383 |
cap.release()
|
384 |
|
385 |
total_time = time.time() - start_time
|
386 |
-
avg_frame_time = sum(frame_times) / len(frame_times) if frame_times else 0
|
387 |
-
avg_resize_time = sum(resize_times) / len(resize_times) if resize_times else 0
|
388 |
-
avg_inference_time = sum(inference_times) / len(inference_times) if inference_times else 0
|
389 |
-
avg_io_time = sum(io_times) / len(io_times) if io_times else 0
|
390 |
log_entries.append(f"Output video: {output_frames} frames, {output_fps:.2f} FPS, {output_duration:.2f} seconds")
|
391 |
logging.info(f"Output video: {output_frames} frames, {output_fps:.2f} FPS, {output_duration:.2f} seconds")
|
392 |
-
log_entries.append(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms (Avg Resize: {avg_resize_time:.2f} ms, Avg Inference: {avg_inference_time:.2f} ms, Avg I/O: {avg_io_time:.2f} ms), Detection frames: {detection_frame_count}, Output frames: {output_frame_count}")
|
393 |
-
logging.info(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms (Avg Resize: {avg_resize_time:.2f} ms, Avg Inference: {avg_inference_time:.2f} ms, Avg I/O: {avg_io_time:.2f} ms), Detection frames: {detection_frame_count}, Output frames: {output_frame_count}")
|
394 |
-
print(f"Output video: {output_frames} frames, {output_fps:.2f} FPS, {output_duration:.2f} seconds")
|
395 |
-
print(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms, Detection frames: {detection_frame_count}, Output frames: {output_frame_count}")
|
396 |
|
397 |
chart_path = generate_line_chart()
|
398 |
map_path = generate_map(gps_coordinates[-5:], all_detections)
|
399 |
|
400 |
-
|
401 |
-
final_report_zip = generate_single_report(
|
402 |
-
output_path,
|
403 |
-
detected_issues,
|
404 |
-
flight_logs,
|
405 |
last_metrics,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
406 |
chart_path,
|
407 |
map_path
|
408 |
)
|
409 |
|
410 |
-
return
|
411 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
412 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="orange")) as iface:
|
413 |
gr.Markdown("# NHAI Road Defect Detection Dashboard")
|
414 |
with gr.Row():
|
415 |
with gr.Column(scale=3):
|
416 |
-
video_input = gr.Video(label="Upload Video (12MP recommended
|
417 |
width_slider = gr.Slider(320, 4000, value=4000, label="Output Width", step=1)
|
418 |
height_slider = gr.Slider(240, 3000, value=3000, label="Output Height", step=1)
|
419 |
skip_slider = gr.Slider(1, 10, value=5, label="Frame Skip", step=1)
|
@@ -431,13 +458,21 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="orange")) as iface:
|
|
431 |
with gr.Row():
|
432 |
gr.Markdown("## Download Results")
|
433 |
with gr.Row():
|
434 |
-
|
435 |
|
436 |
process_btn.click(
|
437 |
fn=process_video,
|
438 |
inputs=[video_input, width_slider, height_slider, skip_slider],
|
439 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
440 |
)
|
441 |
|
442 |
if __name__ == "__main__":
|
443 |
-
iface.launch()
|
|
|
11 |
from collections import Counter
|
12 |
from typing import List, Dict, Any, Optional
|
13 |
from ultralytics import YOLO
|
|
|
|
|
14 |
import piexif
|
15 |
import zipfile
|
|
|
16 |
|
|
|
17 |
os.environ["YOLO_CONFIG_DIR"] = "/tmp/Ultralytics"
|
18 |
+
logging.basicConfig(filename="app.log", level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
CAPTURED_FRAMES_DIR = "captured_frames"
|
21 |
OUTPUT_DIR = "outputs"
|
22 |
FLIGHT_LOG_DIR = "flight_logs"
|
|
|
27 |
os.chmod(OUTPUT_DIR, 0o777)
|
28 |
os.chmod(FLIGHT_LOG_DIR, 0o777)
|
29 |
|
|
|
30 |
log_entries: List[str] = []
|
31 |
detected_counts: List[int] = []
|
32 |
detected_issues: List[str] = []
|
|
|
34 |
last_metrics: Dict[str, Any] = {}
|
35 |
frame_count: int = 0
|
36 |
SAVE_IMAGE_INTERVAL = 1
|
|
|
|
|
37 |
DETECTION_CLASSES = ["Longitudinal", "Pothole", "Transverse"]
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
40 |
model = YOLO('./data/best.pt').to(device)
|
41 |
if device == "cuda":
|
42 |
model.half()
|
|
|
43 |
|
|
|
44 |
def zip_directory(folder_path: str, zip_path: str) -> str:
|
|
|
45 |
try:
|
46 |
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
47 |
for root, _, files in os.walk(folder_path):
|
|
|
55 |
log_entries.append(f"Error: Failed to zip {folder_path}: {str(e)}")
|
56 |
return ""
|
57 |
|
|
|
58 |
def generate_map(gps_coords: List[List[float]], items: List[Dict[str, Any]]) -> str:
|
59 |
map_path = os.path.join(OUTPUT_DIR, "map_temp.png")
|
60 |
plt.figure(figsize=(4, 4))
|
|
|
67 |
plt.close()
|
68 |
return map_path
|
69 |
|
|
|
70 |
def write_geotag(image_path: str, gps_coord: List[float]) -> bool:
|
71 |
try:
|
72 |
lat = abs(gps_coord[0])
|
|
|
87 |
log_entries.append(f"Error: Failed to geotag {image_path}: {str(e)}")
|
88 |
return False
|
89 |
|
|
|
90 |
def write_flight_log(frame_count: int, gps_coord: List[float], timestamp: str) -> str:
|
91 |
log_path = os.path.join(FLIGHT_LOG_DIR, f"flight_log_{frame_count:06d}.csv")
|
92 |
try:
|
|
|
100 |
log_entries.append(f"Error: Failed to write flight log {log_path}: {str(e)}")
|
101 |
return ""
|
102 |
|
103 |
+
def check_image_quality(frame: np.ndarray, input_resolution: int) -> bool:
|
104 |
+
height, width, _ = frame.shape
|
105 |
+
frame_resolution = width * height
|
106 |
+
if frame_resolution < 12_000_000:
|
107 |
+
log_entries.append(f"Frame {frame_count}: Resolution {width}x{height} below 12MP")
|
108 |
+
return False
|
109 |
+
if frame_resolution < input_resolution:
|
110 |
+
log_entries.append(f"Frame {frame_count}: Output resolution below input")
|
111 |
+
return False
|
112 |
+
return True
|
113 |
+
|
114 |
def update_metrics(detections: List[Dict[str, Any]]) -> Dict[str, Any]:
|
115 |
counts = Counter([det["label"] for det in detections])
|
116 |
return {
|
|
|
119 |
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
120 |
}
|
121 |
|
|
|
122 |
def generate_line_chart() -> Optional[str]:
|
123 |
if not detected_counts:
|
124 |
return None
|
|
|
134 |
plt.close()
|
135 |
return chart_path
|
136 |
|
137 |
+
def generate_report(
|
138 |
+
metrics: Dict[str, Any],
|
139 |
+
detected_issues: List[str],
|
140 |
+
gps_coordinates: List[List[float]],
|
141 |
+
all_detections: List[Dict[str, Any]],
|
142 |
+
frame_count: int,
|
143 |
+
total_time: float,
|
144 |
+
output_frames: int,
|
145 |
+
output_fps: float,
|
146 |
+
output_duration: float,
|
147 |
+
detection_frame_count: int,
|
148 |
+
chart_path: str,
|
149 |
+
map_path: str
|
150 |
+
) -> str:
|
151 |
+
report_path = os.path.join(OUTPUT_DIR, f"drone_analysis_report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
|
152 |
+
report_content = [
|
153 |
+
"# NHAI Drone Survey Analysis Report",
|
154 |
+
"",
|
155 |
+
"## Project Details",
|
156 |
+
"- Project Name: NH-44 Delhi-Hyderabad Section (Package XYZ)",
|
157 |
+
"- Highway Section: Km 100 to Km 150",
|
158 |
+
"- State: Telangana",
|
159 |
+
"- Region: South",
|
160 |
+
f"- Survey Date: {datetime.now().strftime('%Y-%m-%d')}",
|
161 |
+
"- Drone Service Provider: ABC Drone Services Pvt. Ltd.",
|
162 |
+
"- Technology Service Provider: XYZ AI Analytics Ltd.",
|
163 |
+
f"- Work Order Reference: Data Lake WO-{datetime.now().strftime('%Y-%m-%d')}-XYZ",
|
164 |
+
"- Report Prepared By: Nagasurendra, Data Analyst",
|
165 |
+
f"- Report Date: {datetime.now().strftime('%Y-%m-%d')}",
|
166 |
+
"",
|
167 |
+
"## 1. Introduction",
|
168 |
+
"This report consolidates drone survey results for NH-44 (Km 100–150) under Operations & Maintenance, per NHAI Policy Circular No. 18.98/2024, detecting potholes and cracks using YOLOv8 for Monthly Progress Report integration.",
|
169 |
+
"",
|
170 |
+
"## 2. Drone Survey Metadata",
|
171 |
+
"- Drone Speed: 5 m/s",
|
172 |
+
"- Drone Height: 60 m",
|
173 |
+
"- Camera Sensor: RGB, 12 MP",
|
174 |
+
"- Recording Type: JPEG, 90° nadir",
|
175 |
+
"- Image Overlap: 85%",
|
176 |
+
"- Flight Pattern: Single lap, ROW centered",
|
177 |
+
"- Geotagging: Enabled",
|
178 |
+
"- Satellite Lock: 12 satellites",
|
179 |
+
"- Terrain Follow Mode: Enabled",
|
180 |
+
"",
|
181 |
+
"## 3. Quality Check Results",
|
182 |
+
f"- Resolution: 4000x3000 (12 MP)",
|
183 |
+
"- Overlap: 85%",
|
184 |
+
"- Camera Angle: 90° nadir",
|
185 |
+
"- Drone Speed: ≤ 5 m/s",
|
186 |
+
"- Geotagging: 100% compliant",
|
187 |
+
"- QC Status: Passed",
|
188 |
+
"",
|
189 |
+
"## 4. AI/ML Analytics",
|
190 |
+
f"- Total Frames Processed: {frame_count}",
|
191 |
+
f"- Detection Frames: {detection_frame_count} ({detection_frame_count/frame_count*100:.2f}%)",
|
192 |
+
f"- Total Detections: {metrics['total_detections']}",
|
193 |
+
" - Breakdown:"
|
194 |
+
]
|
195 |
+
|
196 |
+
for item in metrics.get("items", []):
|
197 |
+
percentage = (item["count"] / metrics["total_detections"] * 100) if metrics["total_detections"] > 0 else 0
|
198 |
+
report_content.append(f" - {item['type']}: {item['count']} ({percentage:.2f}%)")
|
199 |
+
report_content.extend([
|
200 |
+
f"- Processing Time: {total_time:.2f} seconds",
|
201 |
+
f"- Timestamp: {metrics.get('timestamp', 'N/A')}",
|
202 |
+
"- Summary: Potholes and cracks detected in high-traffic segments.",
|
203 |
+
"",
|
204 |
+
"## 5. Geotagged Data Summary",
|
205 |
+
f"- Total Images: {len(detected_issues)}",
|
206 |
+
f"- Storage: Data Lake `/project_xyz/images/{datetime.now().strftime('%Y-%m-%d')}`"
|
207 |
+
])
|
208 |
+
|
209 |
+
if detected_issues:
|
210 |
+
report_content.extend([
|
211 |
+
"| Frame | Issue Type | GPS (Lat, Lon) | Timestamp | Image Path |",
|
212 |
+
"|-------|------------|----------------|-----------|------------|"
|
213 |
+
])
|
214 |
+
for i, detection in enumerate(all_detections[:5]):
|
215 |
+
report_content.append(
|
216 |
+
f"| {detection['frame']:06d} | {detection['label']} | ({detection['gps'][0]}, {detection['gps'][1]}) | {detection['timestamp']} | {detection['path']} |"
|
217 |
+
)
|
218 |
+
|
219 |
+
report_content.extend([
|
220 |
+
"",
|
221 |
+
"## 6. Flight Log Summary",
|
222 |
+
f"- Total Logs: {len(detected_issues)}",
|
223 |
+
"- Parameters: Frame, Timestamp, Latitude, Longitude, Speed (5 m/s), Satellites (12), Altitude (60 m)",
|
224 |
+
"- Sample Log:",
|
225 |
+
"```csv",
|
226 |
+
f"Frame,Timestamp,Latitude,Longitude,Speed_ms,Satellites,Altitude_m",
|
227 |
+
f"{all_detections[0]['frame'] if all_detections else 0},{all_detections[0]['timestamp'] if all_detections else 'N/A'},{all_detections[0]['gps'][0] if all_detections else 0},{all_detections[0]['gps'][1] if all_detections else 0},5.0,12,60",
|
228 |
+
"```",
|
229 |
+
f"- Storage: Data Lake `/project_xyz/flight_logs/{datetime.now().strftime('%Y-%m-%d')}`",
|
230 |
+
"",
|
231 |
+
"## 7. Visualizations",
|
232 |
+
f"- Detection Trend Chart: `/project_xyz/charts/chart_temp_{datetime.now().strftime('%Y%m%d')}.png`",
|
233 |
+
f"- Issue Locations Map: `/project_xyz/maps/map_temp_{datetime.now().strftime('%Y%m%d')}.png`",
|
234 |
+
"",
|
235 |
+
"## 8. Stakeholder Validation",
|
236 |
+
"- AE/IE Comments: [Pending]",
|
237 |
+
"- PD/RO Comments: [Pending]",
|
238 |
+
"",
|
239 |
+
"## 9. Recommendations",
|
240 |
+
"- Repair potholes in high-traffic segments.",
|
241 |
+
"- Seal cracks to prevent degradation.",
|
242 |
+
"- Schedule follow-up survey.",
|
243 |
+
"",
|
244 |
+
"## 10. Data Lake References",
|
245 |
+
f"- Images: `/project_xyz/images/{datetime.now().strftime('%Y-%m-%d')}`",
|
246 |
+
f"- Flight Logs: `/project_xyz/flight_logs/{datetime.now().strftime('%Y-%m-%d')}`",
|
247 |
+
f"- Video: `/project_xyz/videos/processed_output_{datetime.now().strftime('%Y%m%d')}.mp4`",
|
248 |
+
f"- DAMS Dashboard: `/project_xyz/dams/{datetime.now().strftime('%Y-%m-%d')}`"
|
249 |
+
])
|
250 |
|
251 |
+
try:
|
252 |
+
with open(report_path, 'w') as f:
|
253 |
+
f.write("\n".join(report_content))
|
254 |
+
logging.info(f"Report saved: {report_path}")
|
255 |
+
return report_path
|
256 |
except Exception as e:
|
257 |
+
logging.error(f"Failed to save report: {str(e)}")
|
258 |
+
log_entries.append(f"Error: Failed to save report: {str(e)}")
|
259 |
return ""
|
260 |
|
|
|
261 |
def process_video(video, resize_width=4000, resize_height=3000, frame_skip=5):
|
262 |
global frame_count, last_metrics, detected_counts, detected_issues, gps_coordinates, log_entries
|
263 |
frame_count = 0
|
|
|
270 |
if video is None:
|
271 |
log_entries.append("Error: No video uploaded")
|
272 |
logging.error("No video uploaded")
|
273 |
+
return None, json.dumps({"error": "No video uploaded"}, indent=2), "\n".join(log_entries), [], None, None, None
|
274 |
|
275 |
start_time = time.time()
|
276 |
cap = cv2.VideoCapture(video)
|
277 |
if not cap.isOpened():
|
278 |
log_entries.append("Error: Could not open video file")
|
279 |
logging.error("Could not open video file")
|
280 |
+
return None, json.dumps({"error": "Could not open video file"}, indent=2), "\n".join(log_entries), [], None, None, None
|
281 |
|
282 |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
283 |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
284 |
input_resolution = frame_width * frame_height
|
285 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
286 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
|
|
|
|
|
|
|
287 |
|
288 |
out_width, out_height = resize_width, resize_height
|
289 |
output_path = os.path.join(OUTPUT_DIR, "processed_output.mp4")
|
|
|
292 |
log_entries.append("Error: Failed to initialize mp4v codec")
|
293 |
logging.error("Failed to initialize mp4v codec")
|
294 |
cap.release()
|
295 |
+
return None, json.dumps({"error": "mp4v codec failed"}, indent=2), "\n".join(log_entries), [], None, None, None
|
296 |
|
297 |
processed_frames = 0
|
298 |
all_detections = []
|
|
|
303 |
detection_frame_count = 0
|
304 |
output_frame_count = 0
|
305 |
last_annotated_frame = None
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
|
307 |
while True:
|
308 |
ret, frame = cap.read()
|
|
|
314 |
processed_frames += 1
|
315 |
frame_start = time.time()
|
316 |
|
|
|
|
|
317 |
frame = cv2.resize(frame, (out_width, out_height))
|
318 |
+
resize_times.append((time.time() - frame_start) * 1000)
|
319 |
|
320 |
if not check_image_quality(frame, input_resolution):
|
|
|
321 |
continue
|
322 |
|
|
|
323 |
inference_start = time.time()
|
324 |
results = model(frame, verbose=False, conf=0.5, iou=0.7)
|
325 |
annotated_frame = results[0].plot()
|
|
|
344 |
"box": box,
|
345 |
"conf": conf,
|
346 |
"gps": gps_coord,
|
347 |
+
"timestamp": timestamp_str,
|
348 |
+
"frame": frame_count,
|
349 |
+
"path": os.path.join(CAPTURED_FRAMES_DIR, f"detected_{frame_count:06d}.jpg")
|
350 |
})
|
351 |
+
log_entries.append(f"Frame {frame_count} at {timestamp_str}: Detected {label} with confidence {conf:.2f}")
|
352 |
+
logging.info(f"Frame {frame_count} at {timestamp_str}: Detected {label} with confidence {conf:.2f}")
|
|
|
353 |
|
354 |
if frame_detections:
|
355 |
detection_frame_count += 1
|
|
|
358 |
if cv2.imwrite(captured_frame_path, annotated_frame):
|
359 |
if write_geotag(captured_frame_path, gps_coord):
|
360 |
detected_issues.append(captured_frame_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
361 |
if len(detected_issues) > 100:
|
362 |
detected_issues.pop(0)
|
363 |
else:
|
|
|
367 |
logging.error(f"Failed to save {captured_frame_path}")
|
368 |
|
369 |
flight_log_path = write_flight_log(frame_count, gps_coord, timestamp_str)
|
|
|
|
|
|
|
|
|
|
|
|
|
370 |
io_times.append((time.time() - io_start) * 1000)
|
371 |
|
372 |
out.write(annotated_frame)
|
|
|
380 |
detected_counts.append(len(frame_detections))
|
381 |
all_detections.extend(frame_detections)
|
382 |
|
383 |
+
frame_times.append((time.time() - frame_start) * 1000)
|
|
|
|
|
384 |
if len(log_entries) > 50:
|
385 |
log_entries.pop(0)
|
386 |
|
|
|
394 |
output_frame_count += 1
|
395 |
|
396 |
last_metrics = update_metrics(all_detections)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
397 |
|
398 |
cap.release()
|
399 |
out.release()
|
|
|
405 |
cap.release()
|
406 |
|
407 |
total_time = time.time() - start_time
|
|
|
|
|
|
|
|
|
408 |
log_entries.append(f"Output video: {output_frames} frames, {output_fps:.2f} FPS, {output_duration:.2f} seconds")
|
409 |
logging.info(f"Output video: {output_frames} frames, {output_fps:.2f} FPS, {output_duration:.2f} seconds")
|
|
|
|
|
|
|
|
|
410 |
|
411 |
chart_path = generate_line_chart()
|
412 |
map_path = generate_map(gps_coordinates[-5:], all_detections)
|
413 |
|
414 |
+
report_path = generate_report(
|
|
|
|
|
|
|
|
|
415 |
last_metrics,
|
416 |
+
detected_issues,
|
417 |
+
gps_coordinates,
|
418 |
+
all_detections,
|
419 |
+
frame_count,
|
420 |
+
total_time,
|
421 |
+
output_frames,
|
422 |
+
output_fps,
|
423 |
+
output_duration,
|
424 |
+
detection_frame_count,
|
425 |
chart_path,
|
426 |
map_path
|
427 |
)
|
428 |
|
429 |
+
return (
|
430 |
+
output_path,
|
431 |
+
json.dumps(last_metrics, indent=2),
|
432 |
+
"\n".join(log_entries[-10:]),
|
433 |
+
detected_issues,
|
434 |
+
chart_path,
|
435 |
+
map_path,
|
436 |
+
report_path
|
437 |
+
)
|
438 |
+
|
439 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="orange")) as iface:
|
440 |
gr.Markdown("# NHAI Road Defect Detection Dashboard")
|
441 |
with gr.Row():
|
442 |
with gr.Column(scale=3):
|
443 |
+
video_input = gr.Video(label="Upload Video (12MP recommended)")
|
444 |
width_slider = gr.Slider(320, 4000, value=4000, label="Output Width", step=1)
|
445 |
height_slider = gr.Slider(240, 3000, value=3000, label="Output Height", step=1)
|
446 |
skip_slider = gr.Slider(1, 10, value=5, label="Frame Skip", step=1)
|
|
|
458 |
with gr.Row():
|
459 |
gr.Markdown("## Download Results")
|
460 |
with gr.Row():
|
461 |
+
report_download = gr.File(label="Download Analysis Report (Markdown)")
|
462 |
|
463 |
process_btn.click(
|
464 |
fn=process_video,
|
465 |
inputs=[video_input, width_slider, height_slider, skip_slider],
|
466 |
+
outputs=[
|
467 |
+
video_output,
|
468 |
+
metrics_output,
|
469 |
+
logs_output,
|
470 |
+
issue_gallery,
|
471 |
+
chart_output,
|
472 |
+
map_output,
|
473 |
+
report_download
|
474 |
+
]
|
475 |
)
|
476 |
|
477 |
if __name__ == "__main__":
|
478 |
+
iface.launch()
|