Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,82 +2,92 @@ import cv2
|
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
-
|
6 |
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# Load YOLOv8 model
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
-
|
11 |
-
model.to(device)
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
27 |
while True:
|
28 |
-
|
29 |
-
ret
|
30 |
-
|
31 |
-
break # End of video
|
32 |
-
|
33 |
-
# Resize the frame
|
34 |
-
frame = cv2.resize(frame, (new_width, new_height))
|
35 |
-
|
36 |
-
# Perform inference on the frame
|
37 |
-
results = model(frame) # Automatically uses GPU if available
|
38 |
-
|
39 |
-
# If there are detections
|
40 |
-
if len(results[0].boxes) > 0:
|
41 |
-
boxes = results[0].boxes.xyxy.cpu().numpy() # Get the bounding boxes
|
42 |
-
|
43 |
-
# Annotate the frame with bounding boxes
|
44 |
-
annotated_frame = results[0].plot()
|
45 |
-
|
46 |
-
# Convert the frame to RGB
|
47 |
-
annotated_frame_rgb = cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB)
|
48 |
-
|
49 |
-
# Append the frame with detection to list
|
50 |
-
frames_with_detections.append(annotated_frame_rgb)
|
51 |
-
|
52 |
-
# Create a simple bar chart to show the count of detected objects
|
53 |
-
fig, ax = plt.subplots()
|
54 |
-
ax.bar([1], [len(boxes)], color='blue') # Bar for the current frame detection
|
55 |
-
ax.set_xlabel('Frame')
|
56 |
-
ax.set_ylabel('Number of Detections')
|
57 |
-
ax.set_title('Detection Count per Frame')
|
58 |
-
|
59 |
-
# Convert plot to an image to return it in Gradio output
|
60 |
-
plt.tight_layout()
|
61 |
-
plt.close(fig)
|
62 |
-
|
63 |
-
# Save the plot as an image in memory
|
64 |
-
buf = np.frombuffer(fig.canvas.print_to_buffer()[0], dtype=np.uint8)
|
65 |
-
img = cv2.imdecode(buf, cv2.IMREAD_COLOR)
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
# Gradio interface
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
+
import os
|
6 |
import matplotlib.pyplot as plt
|
7 |
+
from ultralytics import YOLO, __version__ as ultralytics_version
|
8 |
+
|
9 |
+
# Debug: Check environment
|
10 |
+
print(f"Torch version: {torch.__version__}")
|
11 |
+
print(f"Gradio version: {gr.__version__}")
|
12 |
+
print(f"Ultralytics version: {ultralytics_version}")
|
13 |
+
print(f"CUDA available: {torch.cuda.is_available()}")
|
14 |
|
15 |
# Load YOLOv8 model
|
16 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
+
print(f"Using device: {device}")
|
18 |
+
model = YOLO('./data/best.pt').to(device)
|
19 |
+
|
20 |
+
def process_video(video, output_folder="detected_frames", plot_graphs=False):
|
21 |
+
if video is None:
|
22 |
+
return "Error: No video uploaded"
|
23 |
+
|
24 |
+
# Create output folder if it doesn't exist
|
25 |
+
if not os.path.exists(output_folder):
|
26 |
+
os.makedirs(output_folder)
|
27 |
+
|
28 |
+
cap = cv2.VideoCapture(video)
|
29 |
+
if not cap.isOpened():
|
30 |
+
return "Error: Could not open video file"
|
31 |
+
|
32 |
+
frame_width, frame_height = 320, 240 # Smaller resolution
|
33 |
+
frame_count = 0
|
34 |
+
frame_skip = 5 # Process every 5th frame
|
35 |
+
max_frames = 100 # Limit for testing
|
36 |
+
confidence_scores = [] # Store confidence scores for plotting
|
37 |
+
|
38 |
while True:
|
39 |
+
ret, frame = cap.read()
|
40 |
+
if not ret or frame_count > max_frames:
|
41 |
+
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
frame_count += 1
|
44 |
+
if frame_count % frame_skip != 0:
|
45 |
+
continue
|
46 |
+
|
47 |
+
frame = cv2.resize(frame, (frame_width, frame_height))
|
48 |
+
print(f"Processing frame {frame_count}")
|
49 |
+
|
50 |
+
# Run YOLOv8 inference
|
51 |
+
results = model(frame)
|
52 |
+
annotated_frame = results[0].plot()
|
53 |
+
|
54 |
+
# Save annotated frame
|
55 |
+
frame_filename = os.path.join(output_folder, f"frame_{frame_count:04d}.jpg")
|
56 |
+
cv2.imwrite(frame_filename, annotated_frame)
|
57 |
+
|
58 |
+
# Collect confidence scores for plotting
|
59 |
+
if results[0].boxes is not None:
|
60 |
+
confs = results[0].boxes.conf.cpu().numpy()
|
61 |
+
confidence_scores.extend(confs)
|
62 |
+
|
63 |
+
cap.release()
|
64 |
+
|
65 |
+
# Generate confidence score plot if requested
|
66 |
+
graph_path = None
|
67 |
+
if plot_graphs and confidence_scores:
|
68 |
+
plt.figure(figsize=(10, 5))
|
69 |
+
plt.hist(confidence_scores, bins=20, color='blue', alpha=0.7)
|
70 |
+
plt.title('Distribution of Confidence Scores')
|
71 |
+
plt.xlabel('Confidence Score')
|
72 |
+
plt.ylabel('Frequency')
|
73 |
+
graph_path = os.path.join(output_folder, "confidence_histogram.png")
|
74 |
+
plt.savefig(graph_path)
|
75 |
+
plt.close()
|
76 |
+
|
77 |
+
return f"Frames saved in {output_folder}. {f'Graph saved as {graph_path}' if graph_path else ''}"
|
78 |
|
79 |
# Gradio interface
|
80 |
+
iface = gr.Interface(
|
81 |
+
fn=process_video,
|
82 |
+
inputs=[
|
83 |
+
gr.Video(label="Upload Video"),
|
84 |
+
gr.Textbox(label="Output Folder", value="detected_frames"),
|
85 |
+
gr.Checkbox(label="Generate Confidence Score Graph", value=False)
|
86 |
+
],
|
87 |
+
outputs=gr.Text(label="Status"),
|
88 |
+
title="YOLOv8 Object Detection - Frames Output",
|
89 |
+
description="Upload a short video to save detected frames as images and optionally generate a confidence score graph."
|
90 |
+
)
|
91 |
+
|
92 |
+
if __name__ == "__main__":
|
93 |
+
iface.launch()
|