File size: 12,560 Bytes
6cb50ff
a03d512
 
04f4d0b
8c84287
6070e3c
 
4527f8f
6070e3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c84287
 
 
 
6070e3c
8c84287
a668c53
6070e3c
04f4d0b
8c84287
 
6070e3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c84287
 
6070e3c
 
 
 
 
8c84287
 
6070e3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c16972a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6070e3c
c16972a
6070e3c
 
 
 
 
 
c16972a
6070e3c
a03d512
8c84287
6070e3c
8c84287
 
 
 
6070e3c
0b0a1d1
6070e3c
 
 
 
 
0b0a1d1
 
 
 
6070e3c
 
 
 
 
 
c16972a
 
0b0a1d1
 
 
 
6070e3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c16972a
6070e3c
 
 
 
 
 
 
 
 
 
0b0a1d1
6070e3c
 
 
 
 
 
0b0a1d1
6070e3c
c16972a
 
 
6070e3c
 
 
 
 
 
 
c16972a
 
 
6070e3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c84287
6070e3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cb50ff
4527f8f
6070e3c
c16972a
2e47361
6070e3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e47361
8c84287
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import cv2
import torch
import gradio as gr
import numpy as np
import os
import json
import logging
import matplotlib.pyplot as plt
from datetime import datetime
from collections import Counter
from typing import List, Dict, Any, Optional
from ultralytics import YOLO
import ultralytics
import time

# Set YOLO config directory
os.environ["YOLO_CONFIG_DIR"] = "/tmp/Ultralytics"

# Set up logging
logging.basicConfig(
    filename="app.log",
    level=logging.INFO,
    format="%(asctime)s - %(levelname)s - %(message)s"
)

# Directories
CAPTURED_FRAMES_DIR = "captured_frames"
OUTPUT_DIR = "outputs"
os.makedirs(CAPTURED_FRAMES_DIR, exist_ok=True)
os.makedirs(OUTPUT_DIR, exist_ok=True)
os.chmod(CAPTURED_FRAMES_DIR, 0o777)
os.chmod(OUTPUT_DIR, 0o777)

# Global variables
log_entries: List[str] = []
detected_counts: List[int] = []
detected_issues: List[str] = []
gps_coordinates: List[List[float]] = []
last_metrics: Dict[str, Any] = {}
frame_count: int = 0
SAVE_IMAGE_INTERVAL = 1  # Save every frame with detections

# Debug: Check environment
print(f"Torch version: {torch.__version__}")
print(f"Gradio version: {gr.__version__}")
print(f"Ultralytics version: {ultralytics.__version__}")
print(f"CUDA available: {torch.cuda.is_available()}")

# Load custom YOLO model
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
model = YOLO('./data/best.pt').to(device)
if device == "cuda":
    model.half()  # Use half-precision (FP16)
print(f"Model classes: {model.names}")

# Mock service functions
def generate_map(gps_coords: List[List[float]], items: List[Dict[str, Any]]) -> str:
    map_path = "map_temp.png"
    plt.figure(figsize=(4, 4))
    plt.scatter([x[1] for x in gps_coords], [x[0] for x in gps_coords], c='blue', label='GPS Points')
    plt.title("Issue Locations Map")
    plt.xlabel("Longitude")
    plt.ylabel("Latitude")
    plt.legend()
    plt.savefig(map_path)
    plt.close()
    return map_path

def send_to_salesforce(data: Dict[str, Any]) -> None:
    pass  # Minimal mock

def update_metrics(detections: List[Dict[str, Any]]) -> Dict[str, Any]:
    counts = Counter([det["label"] for det in detections])
    return {
        "items": [{"type": k, "count": v} for k, v in counts.items()],
        "total_detections": len(detections),
        "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    }

def generate_line_chart() -> Optional[str]:
    if not detected_counts:
        return None
    plt.figure(figsize=(4, 2))
    plt.plot(detected_counts[-50:], marker='o', color='#FF8C00')
    plt.title("Detections Over Time")
    plt.xlabel("Frame")
    plt.ylabel("Count")
    plt.grid(True)
    plt.tight_layout()
    chart_path = "chart_temp.png"
    plt.savefig(chart_path)
    plt.close()
    return chart_path

def process_video(video, resize_width=320, resize_height=240, frame_skip=5):
    global frame_count, last_metrics, detected_counts, detected_issues, gps_coordinates, log_entries
    frame_count = 0
    detected_counts.clear()
    detected_issues.clear()
    gps_coordinates.clear()
    log_entries.clear()
    last_metrics = {}

    if video is None:
        log_entries.append("Error: No video uploaded")
        logging.error("No video uploaded")
        return "processed_output.mp4", json.dumps({"error": "No video uploaded"}, indent=2), "\n".join(log_entries), [], None, None

    start_time = time.time()
    cap = cv2.VideoCapture(video)
    if not cap.isOpened():
        log_entries.append("Error: Could not open video file")
        logging.error("Could not open video file")
        return "processed_output.mp4", json.dumps({"error": "Could not open video file"}, indent=2), "\n".join(log_entries), [], None, None

    frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    fps = cap.get(cv2.CAP_PROP_FPS)
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    expected_duration = total_frames / fps if fps > 0 else 0
    log_entries.append(f"Input video: {frame_width}x{frame_height}, {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds")
    logging.info(f"Input video: {frame_width}x{frame_height}, {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds")
    print(f"Input video: {frame_width}x{frame_height}, {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds")

    out_width, out_height = resize_width, resize_height
    output_path = "processed_output.mp4"
    codecs = [('mp4v', '.mp4'), ('MJPG', '.avi'), ('XVID', '.avi')]
    out = None
    for codec, ext in codecs:
        fourcc = cv2.VideoWriter_fourcc(*codec)
        output_path = f"processed_output{ext}"
        out = cv2.VideoWriter(output_path, fourcc, fps, (out_width, out_height))
        if out.isOpened():
            log_entries.append(f"Using codec: {codec}, output: {output_path}")
            logging.info(f"Using codec: {codec}, output: {output_path}")
            break
        else:
            log_entries.append(f"Failed to initialize codec: {codec}")
            logging.warning(f"Failed to initialize codec: {codec}")

    if not out or not out.isOpened():
        log_entries.append("Error: All codecs failed to initialize video writer")
        logging.error("All codecs failed to initialize video writer")
        cap.release()
        return "processed_output.mp4", json.dumps({"error": "All codecs failed"}, indent=2), "\n".join(log_entries), [], None, None

    processed_frames = 0
    all_detections = []
    frame_times = []
    detection_frame_count = 0
    output_frame_count = 0
    last_annotated_frame = None

    while True:
        ret, frame = cap.read()
        if not ret:
            break
        frame_count += 1
        if frame_count % frame_skip != 0:
            continue
        processed_frames += 1
        frame Cheesecake = time.time()

        frame = cv2.resize(frame, (out_width, out_height))
        results = model(frame, verbose=False, conf=0.5, iou=0.7)
        annotated_frame = results[0].plot()

        # Calculate timestamp for the current frame
        frame_timestamp = frame_count / fps if fps > 0 else 0
        timestamp_str = f"{int(frame_timestamp // 60)}:{int(frame_timestamp % 60):02d}"

        frame_detections = []
        for detection in results[0].boxes:
            cls = int(detection.cls)
            conf = float(detection.conf)
            box = detection.xyxy[0].cpu().numpy().astype(int).tolist()
            label = model.names[cls]
            if label != 'Crocodile':  # Ignore irrelevant class
                frame_detections.append({"label": label, "box": box, "conf": conf})
                # Log detection with timestamp
                log_message = f"Frame {frame_count} at {timestamp_str}: Detected {label} with confidence {conf:.2f}"
                log_entries.append(log_message)
                logging.info(log_message)

        if frame_detections:
            detection_frame_count += 1
            if detection_frame_count % SAVE_IMAGE_INTERVAL == 0:
                captured_frame_path = os.path.join(CAPTURED_FRAMES_DIR, f"detected_{frame_count}.jpg")
                if not cv2.imwrite(captured_frame_path, annotated_frame):
                    log_entries.append(f"Error: Failed to save {captured_frame_path}")
                    logging.error(f"Failed to save {captured_frame_path}")
                else:
                    detected_issues.append(captured_frame_path)
                    if len(detected_issues) > 100:
                        detected_issues.pop(0)

        # Write frame and duplicates
        out.write(annotated_frame)
        output_frame_count += 1
        last_annotated_frame = annotated_frame
        if frame_skip > 1:
            for _ in range(frame_skip - 1):
                out.write(annotated_frame)
                output_frame_count += 1

        detected_counts.append(len(frame_detections))
        gps_coord = [17.385044 + (frame_count * 0.0001), 78.486671 + (frame_count * 0.0001)]
        gps_coordinates.append(gps_coord)
        for det in frame_detections:
            det["gps"] = gps_coord
            det["timestamp"] = timestamp_str  # Add timestamp to detection data
        all_detections.extend(frame_detections)

        frame_time = (time.time() - frame_start) * 1000
        frame_times.append(frame_time)
        detection_summary = {
            "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
            "video_timestamp": timestamp_str,
            "frame": frame_count,
            "longitudinal": sum(1 for det in frame_detections if det["label"] == "Longitudinal"),
            "pothole": sum(1 for det in frame_detections if det["label"] == "Pothole"),
            "transverse": sum(1 for det in frame_detections if det["label"] == "Transverse"),
            "gps": gps_coord,
            "processing_time_ms": frame_time
        }
        log_entries.append(json.dumps(detection_summary, indent=2))
        if len(log_entries) > 50:
            log_entries.pop(0)

    # Pad remaining frames
    while output_frame_count < total_frames and last_annotated_frame is not None:
        out.write(last_annotated_frame)
        output_frame_count += 1

    last_metrics = update_metrics(all_detections)
    send_to_salesforce({
        "detections": all_detections,
        "metrics": last_metrics,
        "timestamp": detection_summary["timestamp"] if all_detections else datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
        "frame_count": frame_count,
        "gps_coordinates": gps_coordinates[-1] if gps_coordinates else [0, 0]
    })

    cap.release()
    out.release()

    cap = cv2.VideoCapture(output_path)
    output_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    output_fps = cap.get(cv2.CAP_PROP_FPS)
    output_duration = output_frames / output_fps if output_fps > 0 else 0
    cap.release()

    total_time = time.time() - start_time
    avg_frame_time = sum(frame_times) / len(frame_times) if frame_times else 0
    log_entries.append(f"Output video: {output_frames} frames, {output_fps} FPS, {output_duration:.2f} seconds")
    log_entries.append(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms, Detection frames: {detection_frame_count}, Output frames: {output_frame_count}")
    logging.info(f"Output video: {output_frames} frames, {output_fps} FPS, {output_duration:.2f} seconds")
    logging.info(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms, Detection frames: {detection_frame_count}, Output frames: {output_frame_count}")
    print(f"Output video: {output_frames} frames, {output_fps} FPS, {output_duration:.2f} seconds")
    print(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms, Detection frames: {detection_frame_count}, Output frames: {output_frame_count}")

    chart_path = generate_line_chart()
    map_path = generate_map(gps_coordinates[-5:], all_detections)

    return (
        output_path,
        json.dumps(last_metrics, indent=2),
        "\n".join(log_entries[-10:]),
        detected_issues,
        chart_path,
        map_path
    )

# Gradio interface
with gr.Blocks(theme=gr.themes.Soft(primary_hue="orange")) as iface:
    gr.Markdown("# Road Defect Detection Dashboard")
    with gr.Row():
        with gr.Column(scale=3):
            video_input = gr.Video(label="Upload Video")
            width_slider = gr.Slider(320, 640, value=320, label="Output Width", step=1)
            height_slider = gr.Slider(240, 480, value=240, label="Output Height", step=1)
            skip_slider = gr.Slider(1, 10, value=5, label="Frame Skip", step=1)
            process_btn = gr.Button("Process Video", variant="primary")
        with gr.Column(scale=1):
            metrics_output = gr.Textbox(label="Detection Metrics", lines=5, interactive=False)
    with gr.Row():
        video_output = gr.Video(label="Processed Video")
        issue_gallery = gr.Gallery(label="Detected Issues", columns=4, height="auto", object_fit="contain")
    with gr.Row():
        chart_output = gr.Image(label="Detection Trend")
        map_output = gr.Image(label="Issue Locations Map")
    with gr.Row():
        logs_output = gr.Textbox(label="Logs", lines=5, interactive=False)

    process_btn.click(
        process_video,
        inputs=[video_input, width_slider, height_slider, skip_slider],
        outputs=[video_output, metrics_output, logs_output, issue_gallery, chart_output, map_output]
    )

if __name__ == "__main__":
    iface.launch()