Spaces:
Sleeping
Sleeping
File size: 16,349 Bytes
5a2600a 6cb50ff a03d512 04f4d0b 8c84287 6070e3c 4527f8f 6070e3c 5a2600a 6070e3c 5a2600a 6070e3c 5a2600a 6070e3c 5a2600a 6070e3c 5a2600a 6070e3c 8c84287 5a2600a 8c84287 6070e3c 8c84287 a668c53 6070e3c 04f4d0b 8c84287 5a2600a 6070e3c 5a2600a 6070e3c 5a2600a 6070e3c 5a2600a 6070e3c 5a2600a 6070e3c 5a2600a 6070e3c 5a2600a 6070e3c 5a2600a 6070e3c 8c84287 6070e3c 8c84287 6070e3c 5a2600a c16972a 5a2600a c16972a 5a2600a c16972a 6070e3c c16972a 6070e3c c16972a 5a2600a 6070e3c a03d512 8c84287 6070e3c 8c84287 6070e3c 77ce6a0 6070e3c 0b0a1d1 5a2600a 6070e3c 5a2600a 0b0a1d1 6070e3c 5a2600a 6070e3c 5a2600a 6070e3c c16972a 6070e3c 0b0a1d1 6070e3c 5a2600a 6070e3c 5a2600a 6070e3c c16972a 6070e3c 5a2600a 6070e3c 8c84287 6070e3c 5a2600a 4527f8f 6070e3c 5a2600a 2e47361 6070e3c 5a2600a 6070e3c 2e47361 8c84287 5a2600a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
import asyncio
import platform
import cv2
import torch
import gradio as gr
import numpy as np
import os
import json
import logging
import matplotlib.pyplot as plt
from datetime import datetime
from collections import Counter
from typing import List, Dict, Any, Optional
from ultralytics import YOLO
import ultralytics
import time
import exiftool
import csv
# Set YOLO config directory
os.environ["YOLO_CONFIG_DIR"] = "/tmp/Ultralytics"
# Set up logging
logging.basicConfig(
filename="drone_app.log",
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s"
)
# Directories
CAPTURED_FRAMES_DIR = "captured_frames"
OUTPUT_DIR = "outputs"
FLIGHT_LOG_DIR = "flight_logs"
os.makedirs(CAPTURED_FRAMES_DIR, exist_ok=True)
os.makedirs(OUTPUT_DIR, exist_ok=True)
os.makedirs(FLIGHT_LOG_DIR, exist_ok=True)
os.chmod(CAPTURED_FRAMES_DIR, 0o777)
os.chmod(OUTPUT_DIR, 0o777)
os.chmod(FLIGHT_LOG_DIR, 0o777)
# Global variables
log_entries: List[str] = []
detected_counts: List[int] = []
detected_issues: List[str] = []
gps_coordinates: List[List[float]] = []
last_metrics: Dict[str, Any] = {}
frame_count: int = 0
SAVE_IMAGE_INTERVAL = 1 # Save every frame with detections
# SOP Parameters from Annexure-I
DRONE_SPEED_MS = 5 # 5 m/s (18 km/hr)
MIN_SATELLITES = 12
IMAGE_OVERLAP = 0.85 # 85% front and side overlap
MIN_RESOLUTION_MP = 12 # Minimum 12 MP
RECORDING_ANGLE = 90 # Nadir (90 degrees)
IMAGE_FORMAT = "JPEG"
# Annexure-III Operations and Maintenance parameters
DETECTION_CLASSES = [
"Potholes", "Edge Drops", "Crack", "Raveling", "Rain Cut Embankments",
"Authorized Median Opening", "Unauthorized Median Opening",
"Intersection/Crossroads", "Temporary Encroachments", "Permanent Encroachments",
"Missing Lane Markings", "Missing Boundary Wall", "Damaged Boundary Wall",
"Open Drain", "Covered Drain", "Blocked Drain", "Unclean Drain",
"Missing Dissipation Basin"
]
# Debug: Check environment
print(f"Torch version: {torch.__version__}")
print(f"Gradio version: {gr.__version__}")
print(f"Ultralytics version: {ultralytics.__version__}")
print(f"CUDA available: {torch.cuda.is_available()}")
# Load custom YOLO model
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
model = YOLO('./data/best.pt').to(device) # Assumes model is trained for all DETECTION_CLASSES
if device == "cuda":
model.half() # Use half-precision (FP16)
print(f"Model classes: {model.names}")
def generate_map(gps_coords: List[List[float]], items: List[Dict[str, Any]]) -> str:
map_path = os.path.join(OUTPUT_DIR, "map_temp.png")
plt.figure(figsize=(4, 4))
plt.scatter([x[1] for x in gps_coords], [x[0] for x in gps_coords], c='blue', label='GPS Points')
plt.title("Issue Locations Map")
plt.xlabel("Longitude")
plt.ylabel("Latitude")
plt.legend()
plt.savefig(map_path)
plt.close()
return map_path
def write_geotag(image_path: str, gps_coord: List[float]) -> bool:
try:
with exiftool.ExifToolHelper() as et:
et.set_tags(
[image_path],
{
"EXIF:GPSLatitude": gps_coord[0],
"EXIF:GPSLongitude": gps_coord[1],
"EXIF:GPSLatitudeRef": "N" if gps_coord[0] >= 0 else "S",
"EXIF:GPSLongitudeRef": "E" if gps_coord[1] >= 0 else "W"
}
)
return True
except Exception as e:
logging.error(f"Failed to geotag {image_path}: {str(e)}")
return False
def write_flight_log(frame_count: int, gps_coord: List[float], timestamp: str) -> str:
log_path = os.path.join(FLIGHT_LOG_DIR, f"flight_log_{frame_count}.csv")
with open(log_path, 'w', newline='') as csvfile:
writer = csv.writer(csvfile)
writer.writerow(["Frame", "Timestamp", "Latitude", "Longitude", "Speed_ms", "Satellites", "Altitude_m"])
writer.writerow([frame_count, timestamp, gps_coord[0], gps_coord[1], DRONE_SPEED_MS, MIN_SATELLITES, 60]) # Example altitude
return log_path
def check_sop_compliance(frame: np.ndarray, gps_coord: List[float], frame_count: int) -> bool:
height, width, _ = frame.shape
if width * height < MIN_RESOLUTION_MP * 1e6: # Check resolution (12MP)
log_entries.append(f"Frame {frame_count}: Resolution below {MIN_RESOLUTION_MP}MP")
return False
if len(gps_coord) != 2 or not all(isinstance(x, float) for x in gps_coord):
log_entries.append(f"Frame {frame_count}: Invalid GPS coordinates")
return False
return True
def update_metrics(detections: List[Dict[str, Any]]) -> Dict[str, Any]:
counts = Counter([det["label"] for det in detections])
metrics = {
"items": [{"type": k, "count": v} for k, v in counts.items()],
"total_detections": len(detections),
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"sop_compliance": {
"drone_speed_ms": DRONE_SPEED_MS,
"image_overlap": IMAGE_OVERLAP,
"min_resolution_mp": MIN_RESOLUTION_MP,
"recording_angle_degrees": RECORDING_ANGLE,
"image_format": IMAGE_FORMAT
}
}
return metrics
def generate_line_chart() -> Optional[str]:
if not detected_counts:
return None
plt.figure(figsize=(4, 2))
plt.plot(detected_counts[-50:], marker='o', color='#FF8C00')
plt.title("Detections Over Time")
plt.xlabel("Frame")
plt.ylabel("Count")
plt.grid(True)
plt.tight_layout()
chart_path = os.path.join(OUTPUT_DIR, "chart_temp.png")
plt.savefig(chart_path)
plt.close()
return chart_path
async def process_video(video, resize_width=320, resize_height=240, frame_skip=5):
global frame_count, last_metrics, detected_counts, detected_issues, gps_coordinates, log_entries
frame_count = 0
detected_counts.clear()
detected_issues.clear()
gps_coordinates.clear()
log_entries.clear()
last_metrics = {}
if video is None:
log_entries.append("Error: No video uploaded")
logging.error("No video uploaded")
return "processed_output.mp4", json.dumps({"error": "No video uploaded"}, indent=2), "\n".join(log_entries), [], None, None
start_time = time.time()
cap = cv2.VideoCapture(video)
if not cap.isOpened():
log_entries.append("Error: Could not open video file")
logging.error("Could not open video file")
return "processed_output.mp4", json.dumps({"error": "Could not open video file"}, indent=2), "\n".join(log_entries), [], None, None
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
expected_duration = total_frames / fps if fps > 0 else 0
log_entries.append(f"Input video: {frame_width}x{frame_height}, {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds")
logging.info(f"Input video: {frame_width}x{frame_height}, {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds")
print(f"Input video: {frame_width}x{frame_height}, {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds")
out_width, out_height = resize_width, resize_height
output_path = os.path.join(OUTPUT_DIR, "processed_output.mp4")
codecs = [('mp4v', '.mp4'), ('MJPG', '.avi'), ('XVID', '.avi')]
out = None
for codec, ext in codecs:
fourcc = cv2.VideoWriter_fourcc(*codec)
temp_output_path = os.path.join(OUTPUT_DIR, f"processed_output{ext}")
out = cv2.VideoWriter(temp_output_path, fourcc, fps, (out_width, out_height))
if out.isOpened():
output_path = temp_output_path
log_entries.append(f"Using codec: {codec}, output: {output_path}")
logging.info(f"Using codec: {codec}, output: {output_path}")
break
else:
log_entries.append(f"Failed to initialize codec: {codec}")
logging.warning(f"Failed to initialize codec: {codec}")
if not out or not out.isOpened():
log_entries.append("Error: All codecs failed to initialize video writer")
logging.error("All codecs failed to initialize video writer")
cap.release()
return "processed_output.mp4", json.dumps({"error": "All codecs failed"}, indent=2), "\n".join(log_entries), [], None, None
processed_frames = 0
all_detections = []
frame_times = []
detection_frame_count = 0
output_frame_count = 0
last_annotated_frame = None
data_lake_submission = {
"images": [],
"flight_logs": [],
"analytics": []
}
while True:
ret, frame = cap.read()
if not ret:
break
frame_count += 1
if frame_count % frame_skip != 0:
continue
processed_frames += 1
frame_start = time.time()
frame = cv2.resize(frame, (out_width, out_height))
results = model(frame, verbose=False, conf=0.5, iou=0.7)
annotated_frame = results[0].plot()
frame_timestamp = frame_count / fps if fps > 0 else 0
timestamp_str = f"{int(frame_timestamp // 60)}:{int(frame_timestamp % 60):02d}"
gps_coord = [17.385044 + (frame_count * 0.0001), 78.486671 + (frame_count * 0.0001)]
if not check_sop_compliance(frame, gps_coord, frame_count):
log_entries.append(f"Frame {frame_count}: SOP compliance check failed")
continue
frame_detections = []
for detection in results[0].boxes:
cls = int(detection.cls)
conf = float(detection.conf)
box = detection.xyxy[0].cpu().numpy().astype(int).tolist()
label = model.names[cls]
if label in DETECTION_CLASSES:
frame_detections.append({
"label": label,
"box": box,
"conf": conf,
"gps": gps_coord,
"timestamp": timestamp_str
})
log_message = f"Frame {frame_count} at {timestamp_str}: Detected {label} with confidence {conf:.2f}"
log_entries.append(log_message)
logging.info(log_message)
if frame_detections:
detection_frame_count += 1
if detection_frame_count % SAVE_IMAGE_INTERVAL == 0:
captured_frame_path = os.path.join(CAPTURED_FRAMES_DIR, f"detected_{frame_count:06d}.jpg")
if not cv2.imwrite(captured_frame_path, annotated_frame):
log_entries.append(f"Error: Failed to save {captured_frame_path}")
logging.error(f"Failed to save {captured_frame_path}")
else:
if write_geotag(captured_frame_path, gps_coord):
detected_issues.append(captured_frame_path)
data_lake_submission["images"].append({
"path": captured_frame_path,
"frame": frame_count,
"gps": gps_coord,
"timestamp": timestamp_str
})
if len(detected_issues) > 100:
detected_issues.pop(0)
else:
log_entries.append(f"Error: Failed to geotag {captured_frame_path}")
flight_log_path = write_flight_log(frame_count, gps_coord, timestamp_str)
data_lake_submission["flight_logs"].append({
"path": flight_log_path,
"frame": frame_count
})
out.write(annotated_frame)
output_frame_count += 1
last_annotated_frame = annotated_frame
if frame_skip > 1:
for _ in range(frame_skip - 1):
out.write(annotated_frame)
output_frame_count += 1
detected_counts.append(len(frame_detections))
gps_coordinates.append(gps_coord)
all_detections.extend(frame_detections)
detection_summary = {
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"video_timestamp": timestamp_str,
"frame": frame_count,
"gps": gps_coord,
"processing_time_ms": (time.time() - frame_start) * 1000,
"detections": {label: sum(1 for det in frame_detections if det["label"] == label) for label in DETECTION_CLASSES}
}
data_lake_submission["analytics"].append(detection_summary)
log_entries.append(json.dumps(detection_summary, indent=2))
if len(log_entries) > 50:
log_entries.pop(0)
while output_frame_count < total_frames and last_annotated_frame is not None:
out.write(last_annotated_frame)
output_frame_count += 1
last_metrics = update_metrics(all_detections)
data_lake_submission["metrics"] = last_metrics
data_lake_submission["frame_count"] = frame_count
data_lake_submission["gps_coordinates"] = gps_coordinates[-1] if gps_coordinates else [0, 0]
submission_json_path = os.path.join(OUTPUT_DIR, "data_lake_submission.json")
with open(submission_json_path, 'w') as f:
json.dump(data_lake_submission, f, indent=2)
cap.release()
out.release()
cap = cv2.VideoCapture(output_path)
output_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
output_fps = cap.get(cv2.CAP_PROP_FPS)
output_duration = output_frames / output_fps if output_fps > 0 else 0
cap.release()
total_time = time.time() - start_time
avg_frame_time = sum(frame_times) / len(frame_times) if frame_times else 0
log_entries.append(f"Output video: {output_frames} frames, {output_fps} FPS, {output_duration:.2f} seconds")
log_entries.append(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms, Detection frames: {detection_frame_count}, Output frames: {output_frame_count}")
logging.info(f"Output video: {output_frames} frames, {output_fps} FPS, {output_duration:.2f} seconds")
logging.info(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms, Detection frames: {detection_frame_count}, Output frames: {output_frame_count}")
print(f"Output video: {output_frames} frames, {output_fps} FPS, {output_duration:.2f} seconds")
print(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms, Detection frames: {detection_frame_count}, Output frames: {output_frame_count}")
chart_path = generate_line_chart()
map_path = generate_map(gps_coordinates[-5:], all_detections)
return (
output_path,
json.dumps(last_metrics, indent=2),
"\n".join(log_entries[-10:]),
detected_issues,
chart_path,
map_path
)
# Gradio interface
with gr.Blocks(theme=gr.themes.Soft(primary_hue="orange")) as iface:
gr.Markdown("# NHAI Drone Analytics Dashboard")
with gr.Row():
with gr.Column(scale=3):
video_input = gr.Video(label="Upload Drone Video")
width_slider = gr.Slider(320, 640, value=320, label="Output Width", step=1)
height_slider = gr.Slider(240, 480, value=240, label="Output Height", step=1)
skip_slider = gr.Slider(1, 10, value=5, label="Frame Skip", step=1)
process_btn = gr.Button("Process Video", variant="primary")
with gr.Column(scale=1):
metrics_output = gr.Textbox(label="Detection Metrics", lines=5, interactive=False)
with gr.Row():
video_output = gr.Video(label="Processed Video")
issue_gallery = gr.Gallery(label="Detected Issues", columns=4, height="auto", object_fit="contain")
with gr.Row():
chart_output = gr.Image(label="Detection Trend")
map_output = gr.Image(label="Issue Locations Map")
with gr.Row():
logs_output = gr.Textbox(label="Logs", lines=5, interactive=False)
process_btn.click(
process_video,
inputs=[video_input, width_slider, height_slider, skip_slider],
outputs=[video_output, metrics_output, logs_output, issue_gallery, chart_output, map_output]
)
if platform.system() == "Emscripten":
asyncio.ensure_future(process_video())
else:
if __name__ == "__main__":
iface.launch() |