File size: 16,349 Bytes
5a2600a
 
6cb50ff
a03d512
 
04f4d0b
8c84287
6070e3c
 
4527f8f
6070e3c
 
 
 
 
 
5a2600a
 
6070e3c
 
 
 
 
 
5a2600a
6070e3c
 
 
 
 
 
 
5a2600a
6070e3c
 
5a2600a
6070e3c
 
5a2600a
6070e3c
 
 
 
 
 
 
 
 
8c84287
5a2600a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c84287
 
 
6070e3c
8c84287
a668c53
6070e3c
04f4d0b
8c84287
5a2600a
6070e3c
 
 
 
 
5a2600a
6070e3c
 
 
 
 
 
 
 
 
 
5a2600a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6070e3c
 
 
5a2600a
6070e3c
 
5a2600a
 
 
 
 
 
 
 
6070e3c
5a2600a
6070e3c
 
 
 
 
 
 
 
 
 
 
5a2600a
6070e3c
 
 
 
5a2600a
6070e3c
 
 
 
 
 
 
8c84287
 
6070e3c
 
 
 
 
8c84287
 
6070e3c
 
 
 
 
 
 
 
 
 
 
 
 
 
5a2600a
c16972a
 
 
 
5a2600a
 
c16972a
5a2600a
c16972a
 
 
 
 
 
 
 
 
 
6070e3c
c16972a
6070e3c
 
 
 
 
 
c16972a
5a2600a
 
 
 
 
6070e3c
a03d512
8c84287
6070e3c
8c84287
 
 
 
6070e3c
77ce6a0
6070e3c
 
 
 
 
0b0a1d1
 
 
5a2600a
 
 
 
 
6070e3c
 
 
 
 
 
5a2600a
 
 
 
 
 
 
 
0b0a1d1
 
 
6070e3c
 
 
 
5a2600a
6070e3c
 
 
 
5a2600a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6070e3c
 
 
c16972a
6070e3c
 
 
 
 
 
 
 
 
 
 
0b0a1d1
6070e3c
 
5a2600a
 
6070e3c
5a2600a
6070e3c
 
 
 
c16972a
 
6070e3c
 
 
5a2600a
 
 
 
 
 
 
6070e3c
 
 
 
 
 
 
 
8c84287
6070e3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a2600a
4527f8f
6070e3c
5a2600a
2e47361
6070e3c
5a2600a
6070e3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e47361
8c84287
5a2600a
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import asyncio
import platform
import cv2
import torch
import gradio as gr
import numpy as np
import os
import json
import logging
import matplotlib.pyplot as plt
from datetime import datetime
from collections import Counter
from typing import List, Dict, Any, Optional
from ultralytics import YOLO
import ultralytics
import time
import exiftool
import csv

# Set YOLO config directory
os.environ["YOLO_CONFIG_DIR"] = "/tmp/Ultralytics"

# Set up logging
logging.basicConfig(
    filename="drone_app.log",
    level=logging.INFO,
    format="%(asctime)s - %(levelname)s - %(message)s"
)

# Directories
CAPTURED_FRAMES_DIR = "captured_frames"
OUTPUT_DIR = "outputs"
FLIGHT_LOG_DIR = "flight_logs"
os.makedirs(CAPTURED_FRAMES_DIR, exist_ok=True)
os.makedirs(OUTPUT_DIR, exist_ok=True)
os.makedirs(FLIGHT_LOG_DIR, exist_ok=True)
os.chmod(CAPTURED_FRAMES_DIR, 0o777)
os.chmod(OUTPUT_DIR, 0o777)
os.chmod(FLIGHT_LOG_DIR, 0o777)

# Global variables
log_entries: List[str] = []
detected_counts: List[int] = []
detected_issues: List[str] = []
gps_coordinates: List[List[float]] = []
last_metrics: Dict[str, Any] = {}
frame_count: int = 0
SAVE_IMAGE_INTERVAL = 1  # Save every frame with detections

# SOP Parameters from Annexure-I
DRONE_SPEED_MS = 5  # 5 m/s (18 km/hr)
MIN_SATELLITES = 12
IMAGE_OVERLAP = 0.85  # 85% front and side overlap
MIN_RESOLUTION_MP = 12  # Minimum 12 MP
RECORDING_ANGLE = 90  # Nadir (90 degrees)
IMAGE_FORMAT = "JPEG"

# Annexure-III Operations and Maintenance parameters
DETECTION_CLASSES = [
    "Potholes", "Edge Drops", "Crack", "Raveling", "Rain Cut Embankments",
    "Authorized Median Opening", "Unauthorized Median Opening",
    "Intersection/Crossroads", "Temporary Encroachments", "Permanent Encroachments",
    "Missing Lane Markings", "Missing Boundary Wall", "Damaged Boundary Wall",
    "Open Drain", "Covered Drain", "Blocked Drain", "Unclean Drain",
    "Missing Dissipation Basin"
]

# Debug: Check environment
print(f"Torch version: {torch.__version__}")
print(f"Gradio version: {gr.__version__}")
print(f"Ultralytics version: {ultralytics.__version__}")
print(f"CUDA available: {torch.cuda.is_available()}")

# Load custom YOLO model
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
model = YOLO('./data/best.pt').to(device)  # Assumes model is trained for all DETECTION_CLASSES
if device == "cuda":
    model.half()  # Use half-precision (FP16)
print(f"Model classes: {model.names}")

def generate_map(gps_coords: List[List[float]], items: List[Dict[str, Any]]) -> str:
    map_path = os.path.join(OUTPUT_DIR, "map_temp.png")
    plt.figure(figsize=(4, 4))
    plt.scatter([x[1] for x in gps_coords], [x[0] for x in gps_coords], c='blue', label='GPS Points')
    plt.title("Issue Locations Map")
    plt.xlabel("Longitude")
    plt.ylabel("Latitude")
    plt.legend()
    plt.savefig(map_path)
    plt.close()
    return map_path

def write_geotag(image_path: str, gps_coord: List[float]) -> bool:
    try:
        with exiftool.ExifToolHelper() as et:
            et.set_tags(
                [image_path],
                {
                    "EXIF:GPSLatitude": gps_coord[0],
                    "EXIF:GPSLongitude": gps_coord[1],
                    "EXIF:GPSLatitudeRef": "N" if gps_coord[0] >= 0 else "S",
                    "EXIF:GPSLongitudeRef": "E" if gps_coord[1] >= 0 else "W"
                }
            )
        return True
    except Exception as e:
        logging.error(f"Failed to geotag {image_path}: {str(e)}")
        return False

def write_flight_log(frame_count: int, gps_coord: List[float], timestamp: str) -> str:
    log_path = os.path.join(FLIGHT_LOG_DIR, f"flight_log_{frame_count}.csv")
    with open(log_path, 'w', newline='') as csvfile:
        writer = csv.writer(csvfile)
        writer.writerow(["Frame", "Timestamp", "Latitude", "Longitude", "Speed_ms", "Satellites", "Altitude_m"])
        writer.writerow([frame_count, timestamp, gps_coord[0], gps_coord[1], DRONE_SPEED_MS, MIN_SATELLITES, 60])  # Example altitude
    return log_path

def check_sop_compliance(frame: np.ndarray, gps_coord: List[float], frame_count: int) -> bool:
    height, width, _ = frame.shape
    if width * height < MIN_RESOLUTION_MP * 1e6:  # Check resolution (12MP)
        log_entries.append(f"Frame {frame_count}: Resolution below {MIN_RESOLUTION_MP}MP")
        return False
    if len(gps_coord) != 2 or not all(isinstance(x, float) for x in gps_coord):
        log_entries.append(f"Frame {frame_count}: Invalid GPS coordinates")
        return False
    return True

def update_metrics(detections: List[Dict[str, Any]]) -> Dict[str, Any]:
    counts = Counter([det["label"] for det in detections])
    metrics = {
        "items": [{"type": k, "count": v} for k, v in counts.items()],
        "total_detections": len(detections),
        "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
        "sop_compliance": {
            "drone_speed_ms": DRONE_SPEED_MS,
            "image_overlap": IMAGE_OVERLAP,
            "min_resolution_mp": MIN_RESOLUTION_MP,
            "recording_angle_degrees": RECORDING_ANGLE,
            "image_format": IMAGE_FORMAT
        }
    }
    return metrics

def generate_line_chart() -> Optional[str]:
    if not detected_counts:
        return None
    plt.figure(figsize=(4, 2))
    plt.plot(detected_counts[-50:], marker='o', color='#FF8C00')
    plt.title("Detections Over Time")
    plt.xlabel("Frame")
    plt.ylabel("Count")
    plt.grid(True)
    plt.tight_layout()
    chart_path = os.path.join(OUTPUT_DIR, "chart_temp.png")
    plt.savefig(chart_path)
    plt.close()
    return chart_path

async def process_video(video, resize_width=320, resize_height=240, frame_skip=5):
    global frame_count, last_metrics, detected_counts, detected_issues, gps_coordinates, log_entries
    frame_count = 0
    detected_counts.clear()
    detected_issues.clear()
    gps_coordinates.clear()
    log_entries.clear()
    last_metrics = {}

    if video is None:
        log_entries.append("Error: No video uploaded")
        logging.error("No video uploaded")
        return "processed_output.mp4", json.dumps({"error": "No video uploaded"}, indent=2), "\n".join(log_entries), [], None, None

    start_time = time.time()
    cap = cv2.VideoCapture(video)
    if not cap.isOpened():
        log_entries.append("Error: Could not open video file")
        logging.error("Could not open video file")
        return "processed_output.mp4", json.dumps({"error": "Could not open video file"}, indent=2), "\n".join(log_entries), [], None, None

    frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    fps = cap.get(cv2.CAP_PROP_FPS)
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    expected_duration = total_frames / fps if fps > 0 else 0
    log_entries.append(f"Input video: {frame_width}x{frame_height}, {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds")
    logging.info(f"Input video: {frame_width}x{frame_height}, {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds")
    print(f"Input video: {frame_width}x{frame_height}, {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds")

    out_width, out_height = resize_width, resize_height
    output_path = os.path.join(OUTPUT_DIR, "processed_output.mp4")
    codecs = [('mp4v', '.mp4'), ('MJPG', '.avi'), ('XVID', '.avi')]
    out = None
    for codec, ext in codecs:
        fourcc = cv2.VideoWriter_fourcc(*codec)
        temp_output_path = os.path.join(OUTPUT_DIR, f"processed_output{ext}")
        out = cv2.VideoWriter(temp_output_path, fourcc, fps, (out_width, out_height))
        if out.isOpened():
            output_path = temp_output_path
            log_entries.append(f"Using codec: {codec}, output: {output_path}")
            logging.info(f"Using codec: {codec}, output: {output_path}")
            break
        else:
            log_entries.append(f"Failed to initialize codec: {codec}")
            logging.warning(f"Failed to initialize codec: {codec}")

    if not out or not out.isOpened():
        log_entries.append("Error: All codecs failed to initialize video writer")
        logging.error("All codecs failed to initialize video writer")
        cap.release()
        return "processed_output.mp4", json.dumps({"error": "All codecs failed"}, indent=2), "\n".join(log_entries), [], None, None

    processed_frames = 0
    all_detections = []
    frame_times = []
    detection_frame_count = 0
    output_frame_count = 0
    last_annotated_frame = None
    data_lake_submission = {
        "images": [],
        "flight_logs": [],
        "analytics": []
    }

    while True:
        ret, frame = cap.read()
        if not ret:
            break
        frame_count += 1
        if frame_count % frame_skip != 0:
            continue
        processed_frames += 1
        frame_start = time.time()

        frame = cv2.resize(frame, (out_width, out_height))
        results = model(frame, verbose=False, conf=0.5, iou=0.7)
        annotated_frame = results[0].plot()

        frame_timestamp = frame_count / fps if fps > 0 else 0
        timestamp_str = f"{int(frame_timestamp // 60)}:{int(frame_timestamp % 60):02d}"

        gps_coord = [17.385044 + (frame_count * 0.0001), 78.486671 + (frame_count * 0.0001)]
        if not check_sop_compliance(frame, gps_coord, frame_count):
            log_entries.append(f"Frame {frame_count}: SOP compliance check failed")
            continue

        frame_detections = []
        for detection in results[0].boxes:
            cls = int(detection.cls)
            conf = float(detection.conf)
            box = detection.xyxy[0].cpu().numpy().astype(int).tolist()
            label = model.names[cls]
            if label in DETECTION_CLASSES:
                frame_detections.append({
                    "label": label,
                    "box": box,
                    "conf": conf,
                    "gps": gps_coord,
                    "timestamp": timestamp_str
                })
                log_message = f"Frame {frame_count} at {timestamp_str}: Detected {label} with confidence {conf:.2f}"
                log_entries.append(log_message)
                logging.info(log_message)

        if frame_detections:
            detection_frame_count += 1
            if detection_frame_count % SAVE_IMAGE_INTERVAL == 0:
                captured_frame_path = os.path.join(CAPTURED_FRAMES_DIR, f"detected_{frame_count:06d}.jpg")
                if not cv2.imwrite(captured_frame_path, annotated_frame):
                    log_entries.append(f"Error: Failed to save {captured_frame_path}")
                    logging.error(f"Failed to save {captured_frame_path}")
                else:
                    if write_geotag(captured_frame_path, gps_coord):
                        detected_issues.append(captured_frame_path)
                        data_lake_submission["images"].append({
                            "path": captured_frame_path,
                            "frame": frame_count,
                            "gps": gps_coord,
                            "timestamp": timestamp_str
                        })
                        if len(detected_issues) > 100:
                            detected_issues.pop(0)
                    else:
                        log_entries.append(f"Error: Failed to geotag {captured_frame_path}")

        flight_log_path = write_flight_log(frame_count, gps_coord, timestamp_str)
        data_lake_submission["flight_logs"].append({
            "path": flight_log_path,
            "frame": frame_count
        })

        out.write(annotated_frame)
        output_frame_count += 1
        last_annotated_frame = annotated_frame
        if frame_skip > 1:
            for _ in range(frame_skip - 1):
                out.write(annotated_frame)
                output_frame_count += 1

        detected_counts.append(len(frame_detections))
        gps_coordinates.append(gps_coord)
        all_detections.extend(frame_detections)

        detection_summary = {
            "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
            "video_timestamp": timestamp_str,
            "frame": frame_count,
            "gps": gps_coord,
            "processing_time_ms": (time.time() - frame_start) * 1000,
            "detections": {label: sum(1 for det in frame_detections if det["label"] == label) for label in DETECTION_CLASSES}
        }
        data_lake_submission["analytics"].append(detection_summary)
        log_entries.append(json.dumps(detection_summary, indent=2))
        if len(log_entries) > 50:
            log_entries.pop(0)

    while output_frame_count < total_frames and last_annotated_frame is not None:
        out.write(last_annotated_frame)
        output_frame_count += 1

    last_metrics = update_metrics(all_detections)
    data_lake_submission["metrics"] = last_metrics
    data_lake_submission["frame_count"] = frame_count
    data_lake_submission["gps_coordinates"] = gps_coordinates[-1] if gps_coordinates else [0, 0]

    submission_json_path = os.path.join(OUTPUT_DIR, "data_lake_submission.json")
    with open(submission_json_path, 'w') as f:
        json.dump(data_lake_submission, f, indent=2)

    cap.release()
    out.release()

    cap = cv2.VideoCapture(output_path)
    output_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    output_fps = cap.get(cv2.CAP_PROP_FPS)
    output_duration = output_frames / output_fps if output_fps > 0 else 0
    cap.release()

    total_time = time.time() - start_time
    avg_frame_time = sum(frame_times) / len(frame_times) if frame_times else 0
    log_entries.append(f"Output video: {output_frames} frames, {output_fps} FPS, {output_duration:.2f} seconds")
    log_entries.append(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms, Detection frames: {detection_frame_count}, Output frames: {output_frame_count}")
    logging.info(f"Output video: {output_frames} frames, {output_fps} FPS, {output_duration:.2f} seconds")
    logging.info(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms, Detection frames: {detection_frame_count}, Output frames: {output_frame_count}")
    print(f"Output video: {output_frames} frames, {output_fps} FPS, {output_duration:.2f} seconds")
    print(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms, Detection frames: {detection_frame_count}, Output frames: {output_frame_count}")

    chart_path = generate_line_chart()
    map_path = generate_map(gps_coordinates[-5:], all_detections)

    return (
        output_path,
        json.dumps(last_metrics, indent=2),
        "\n".join(log_entries[-10:]),
        detected_issues,
        chart_path,
        map_path
    )

# Gradio interface
with gr.Blocks(theme=gr.themes.Soft(primary_hue="orange")) as iface:
    gr.Markdown("# NHAI Drone Analytics Dashboard")
    with gr.Row():
        with gr.Column(scale=3):
            video_input = gr.Video(label="Upload Drone Video")
            width_slider = gr.Slider(320, 640, value=320, label="Output Width", step=1)
            height_slider = gr.Slider(240, 480, value=240, label="Output Height", step=1)
            skip_slider = gr.Slider(1, 10, value=5, label="Frame Skip", step=1)
            process_btn = gr.Button("Process Video", variant="primary")
        with gr.Column(scale=1):
            metrics_output = gr.Textbox(label="Detection Metrics", lines=5, interactive=False)
    with gr.Row():
        video_output = gr.Video(label="Processed Video")
        issue_gallery = gr.Gallery(label="Detected Issues", columns=4, height="auto", object_fit="contain")
    with gr.Row():
        chart_output = gr.Image(label="Detection Trend")
        map_output = gr.Image(label="Issue Locations Map")
    with gr.Row():
        logs_output = gr.Textbox(label="Logs", lines=5, interactive=False)

    process_btn.click(
        process_video,
        inputs=[video_input, width_slider, height_slider, skip_slider],
        outputs=[video_output, metrics_output, logs_output, issue_gallery, chart_output, map_output]
    )

if platform.system() == "Emscripten":
    asyncio.ensure_future(process_video())
else:
    if __name__ == "__main__":
        iface.launch()