Spaces:
Sleeping
Sleeping
File size: 1,658 Bytes
54d292a 6cb50ff 54d292a 6cb50ff 54d292a a668c53 54d292a 6cb50ff 54d292a 6cb50ff 54d292a 6cb50ff 54d292a 6cb50ff 54d292a 6cb50ff 54d292a 6cb50ff 54d292a 6cb50ff 54d292a 6cb50ff 54d292a 6cb50ff 54d292a 6cb50ff 54d292a 6cb50ff 54d292a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import torch
import cv2
import numpy as np
# Load your model (assuming it is a PyTorch model)
model = torch.load('./data/model.pt', weights_only=False)
model.eval()
# Open video file (input video)
input_video = cv2.VideoCapture('input_video.mp4')
# Get the frame width, height, and frames per second (fps) from the input video
frame_width = int(input_video.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(input_video.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = input_video.get(cv2.CAP_PROP_FPS)
# Define the output video writer
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # You can change this to any codec
output_video = cv2.VideoWriter('output_video.mp4', fourcc, fps, (frame_width, frame_height))
while True:
# Read a frame from the input video
ret, frame = input_video.read()
if not ret:
break # End of video
# Preprocess the frame if necessary (depends on your model)
# For example, convert to tensor and normalize if required
frame_tensor = torch.tensor(frame).float().unsqueeze(0) # Add batch dimension
# Pass the frame through the model
with torch.no_grad():
output = model(frame_tensor) # Adjust based on your model's requirements
# Postprocess the output if necessary (depends on your model's output format)
output_frame = output.squeeze(0).cpu().numpy() # Remove batch dimension and convert to NumPy
# Convert the model output to a valid image format (if necessary)
output_frame = np.uint8(output_frame)
# Write the frame to the output video
output_video.write(output_frame)
# Release resources
input_video.release()
output_video.release()
cv2.destroyAllWindows()
|