Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,21 @@
|
|
1 |
-
import os
|
2 |
-
import zipfile
|
3 |
-
import json
|
4 |
-
import logging
|
5 |
import cv2
|
6 |
import torch
|
|
|
7 |
import numpy as np
|
|
|
|
|
|
|
8 |
import matplotlib.pyplot as plt
|
|
|
9 |
from datetime import datetime
|
10 |
from collections import Counter
|
|
|
11 |
from ultralytics import YOLO
|
12 |
-
import
|
13 |
import time
|
|
|
|
|
|
|
14 |
|
15 |
# Set YOLO config directory
|
16 |
os.environ["YOLO_CONFIG_DIR"] = "/tmp/Ultralytics"
|
@@ -29,19 +34,37 @@ FLIGHT_LOG_DIR = "flight_logs"
|
|
29 |
os.makedirs(CAPTURED_FRAMES_DIR, exist_ok=True)
|
30 |
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
31 |
os.makedirs(FLIGHT_LOG_DIR, exist_ok=True)
|
|
|
|
|
|
|
32 |
|
33 |
# Global variables
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
39 |
DETECTION_CLASSES = ["Longitudinal", "Pothole", "Transverse"]
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
# Load custom YOLO model
|
42 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
43 |
model = YOLO('./data/best.pt').to(device)
|
|
|
|
|
|
|
44 |
|
|
|
45 |
def zip_directory(folder_path: str, zip_path: str) -> str:
|
46 |
"""Zip all files in a directory."""
|
47 |
try:
|
@@ -54,10 +77,11 @@ def zip_directory(folder_path: str, zip_path: str) -> str:
|
|
54 |
return zip_path
|
55 |
except Exception as e:
|
56 |
logging.error(f"Failed to zip {folder_path}: {str(e)}")
|
|
|
57 |
return ""
|
58 |
|
|
|
59 |
def generate_map(gps_coords: List[List[float]], items: List[Dict[str, Any]]) -> str:
|
60 |
-
"""Generate and save map of detected issue locations."""
|
61 |
map_path = os.path.join(OUTPUT_DIR, "map_temp.png")
|
62 |
plt.figure(figsize=(4, 4))
|
63 |
plt.scatter([x[1] for x in gps_coords], [x[0] for x in gps_coords], c='blue', label='GPS Points')
|
@@ -69,11 +93,13 @@ def generate_map(gps_coords: List[List[float]], items: List[Dict[str, Any]]) ->
|
|
69 |
plt.close()
|
70 |
return map_path
|
71 |
|
|
|
72 |
def write_geotag(image_path: str, gps_coord: List[float]) -> bool:
|
73 |
-
"""Add GPS coordinates as EXIF data to an image."""
|
74 |
try:
|
75 |
-
lat
|
76 |
-
|
|
|
|
|
77 |
exif_dict = piexif.load(image_path) if os.path.exists(image_path) else {"GPS": {}}
|
78 |
exif_dict["GPS"] = {
|
79 |
piexif.GPSIFD.GPSLatitudeRef: lat_ref,
|
@@ -85,98 +111,333 @@ def write_geotag(image_path: str, gps_coord: List[float]) -> bool:
|
|
85 |
return True
|
86 |
except Exception as e:
|
87 |
logging.error(f"Failed to geotag {image_path}: {str(e)}")
|
|
|
88 |
return False
|
89 |
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
frame_count = 0
|
93 |
detected_counts.clear()
|
94 |
detected_issues.clear()
|
95 |
gps_coordinates.clear()
|
96 |
log_entries.clear()
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
|
|
98 |
cap = cv2.VideoCapture(video)
|
99 |
if not cap.isOpened():
|
|
|
100 |
logging.error("Could not open video file")
|
101 |
-
return None, json.dumps({"error": "Could not open video file"}, indent=2)
|
102 |
|
|
|
|
|
|
|
103 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
104 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
|
|
|
|
|
|
|
105 |
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
|
|
109 |
all_detections = []
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
while True:
|
113 |
ret, frame = cap.read()
|
114 |
if not ret:
|
115 |
break
|
116 |
frame_count += 1
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
annotated_frame = results[0].plot()
|
|
|
|
|
|
|
|
|
119 |
|
120 |
-
# Simulate GPS coordinates for each frame
|
121 |
gps_coord = [17.385044 + (frame_count * 0.0001), 78.486671 + (frame_count * 0.0001)]
|
122 |
gps_coordinates.append(gps_coord)
|
123 |
|
|
|
124 |
frame_detections = []
|
125 |
for detection in results[0].boxes:
|
126 |
-
|
|
|
|
|
|
|
127 |
if label in DETECTION_CLASSES:
|
128 |
-
frame_detections.append({
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
if frame_detections:
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
138 |
|
139 |
-
|
140 |
-
with open(log_path, 'w', newline='') as csvfile:
|
141 |
-
writer = csv.writer(csvfile)
|
142 |
-
writer.writerow(["Frame", "Latitude", "Longitude", "Timestamp"])
|
143 |
-
writer.writerow([frame_count, gps_coord[0], gps_coord[1], datetime.now().strftime("%Y-%m-%d %H:%M:%S")])
|
144 |
-
|
145 |
-
data_lake_submission["flight_logs"].append({"path": log_path, "frame": frame_count})
|
146 |
|
147 |
out.write(annotated_frame)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
cap.release()
|
150 |
out.release()
|
151 |
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
plt.close()
|
158 |
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
|
|
|
|
168 |
|
169 |
-
|
|
|
170 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
-
|
173 |
-
|
174 |
-
with gr.Blocks() as iface:
|
175 |
-
gr.Markdown("#
|
176 |
-
|
177 |
-
|
178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
-
process_btn.click(
|
|
|
|
|
|
|
|
|
181 |
|
182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import cv2
|
2 |
import torch
|
3 |
+
import gradio as gr
|
4 |
import numpy as np
|
5 |
+
import os
|
6 |
+
import json
|
7 |
+
import logging
|
8 |
import matplotlib.pyplot as plt
|
9 |
+
import csv
|
10 |
from datetime import datetime
|
11 |
from collections import Counter
|
12 |
+
from typing import List, Dict, Any, Optional
|
13 |
from ultralytics import YOLO
|
14 |
+
import ultralytics
|
15 |
import time
|
16 |
+
import piexif
|
17 |
+
import zipfile
|
18 |
+
import shutil
|
19 |
|
20 |
# Set YOLO config directory
|
21 |
os.environ["YOLO_CONFIG_DIR"] = "/tmp/Ultralytics"
|
|
|
34 |
os.makedirs(CAPTURED_FRAMES_DIR, exist_ok=True)
|
35 |
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
36 |
os.makedirs(FLIGHT_LOG_DIR, exist_ok=True)
|
37 |
+
os.chmod(CAPTURED_FRAMES_DIR, 0o777)
|
38 |
+
os.chmod(OUTPUT_DIR, 0o777)
|
39 |
+
os.chmod(FLIGHT_LOG_DIR, 0o777)
|
40 |
|
41 |
# Global variables
|
42 |
+
log_entries: List[str] = []
|
43 |
+
detected_counts: List[int] = []
|
44 |
+
detected_issues: List[str] = []
|
45 |
+
gps_coordinates: List[List[float]] = []
|
46 |
+
last_metrics: Dict[str, Any] = {}
|
47 |
+
frame_count: int = 0
|
48 |
+
SAVE_IMAGE_INTERVAL = 1
|
49 |
+
|
50 |
+
# Detection classes
|
51 |
DETECTION_CLASSES = ["Longitudinal", "Pothole", "Transverse"]
|
52 |
|
53 |
+
# Debug: Check environment
|
54 |
+
print(f"Torch version: {torch.__version__}")
|
55 |
+
print(f"Gradio version: {gr.__version__}")
|
56 |
+
print(f"Ultralytics version: {ultralytics.__version__}")
|
57 |
+
print(f"CUDA available: {torch.cuda.is_available()}")
|
58 |
+
|
59 |
# Load custom YOLO model
|
60 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
61 |
+
print(f"Using device: {device}")
|
62 |
model = YOLO('./data/best.pt').to(device)
|
63 |
+
if device == "cuda":
|
64 |
+
model.half()
|
65 |
+
print(f"Model classes: {model.names}")
|
66 |
|
67 |
+
# Function to zip all files in a directory
|
68 |
def zip_directory(folder_path: str, zip_path: str) -> str:
|
69 |
"""Zip all files in a directory."""
|
70 |
try:
|
|
|
77 |
return zip_path
|
78 |
except Exception as e:
|
79 |
logging.error(f"Failed to zip {folder_path}: {str(e)}")
|
80 |
+
log_entries.append(f"Error: Failed to zip {folder_path}: {str(e)}")
|
81 |
return ""
|
82 |
|
83 |
+
# Function to generate the map of detected issues' locations
|
84 |
def generate_map(gps_coords: List[List[float]], items: List[Dict[str, Any]]) -> str:
|
|
|
85 |
map_path = os.path.join(OUTPUT_DIR, "map_temp.png")
|
86 |
plt.figure(figsize=(4, 4))
|
87 |
plt.scatter([x[1] for x in gps_coords], [x[0] for x in gps_coords], c='blue', label='GPS Points')
|
|
|
93 |
plt.close()
|
94 |
return map_path
|
95 |
|
96 |
+
# Function to geotag the image with GPS coordinates
|
97 |
def write_geotag(image_path: str, gps_coord: List[float]) -> bool:
|
|
|
98 |
try:
|
99 |
+
lat = abs(gps_coord[0])
|
100 |
+
lon = abs(gps_coord[1])
|
101 |
+
lat_ref = "N" if gps_coord[0] >= 0 else "S"
|
102 |
+
lon_ref = "E" if gps_coord[1] >= 0 else "W"
|
103 |
exif_dict = piexif.load(image_path) if os.path.exists(image_path) else {"GPS": {}}
|
104 |
exif_dict["GPS"] = {
|
105 |
piexif.GPSIFD.GPSLatitudeRef: lat_ref,
|
|
|
111 |
return True
|
112 |
except Exception as e:
|
113 |
logging.error(f"Failed to geotag {image_path}: {str(e)}")
|
114 |
+
log_entries.append(f"Error: Failed to geotag {image_path}: {str(e)}")
|
115 |
return False
|
116 |
|
117 |
+
# Function to write flight logs
|
118 |
+
def write_flight_log(frame_count: int, gps_coord: List[float], timestamp: str) -> str:
|
119 |
+
log_path = os.path.join(FLIGHT_LOG_DIR, f"flight_log_{frame_count:06d}.csv")
|
120 |
+
try:
|
121 |
+
with open(log_path, 'w', newline='') as csvfile:
|
122 |
+
writer = csv.writer(csvfile)
|
123 |
+
writer.writerow(["Frame", "Timestamp", "Latitude", "Longitude", "Speed_ms", "Satellites", "Altitude_m"])
|
124 |
+
writer.writerow([frame_count, timestamp, gps_coord[0], gps_coord[1], 5.0, 12, 60])
|
125 |
+
return log_path
|
126 |
+
except Exception as e:
|
127 |
+
logging.error(f"Failed to write flight log {log_path}: {str(e)}")
|
128 |
+
log_entries.append(f"Error: Failed to write flight log {log_path}: {str(e)}")
|
129 |
+
return ""
|
130 |
+
|
131 |
+
# Function to update the metrics for detections
|
132 |
+
def update_metrics(detections: List[Dict[str, Any]]) -> Dict[str, Any]:
|
133 |
+
counts = Counter([det["label"] for det in detections])
|
134 |
+
return {
|
135 |
+
"items": [{"type": k, "count": v} for k, v in counts.items()],
|
136 |
+
"total_detections": len(detections),
|
137 |
+
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
138 |
+
}
|
139 |
+
|
140 |
+
# Function to generate detection trend chart
|
141 |
+
def generate_line_chart() -> Optional[str]:
|
142 |
+
if not detected_counts:
|
143 |
+
return None
|
144 |
+
plt.figure(figsize=(4, 2))
|
145 |
+
plt.plot(detected_counts[-50:], marker='o', color='#FF8C00')
|
146 |
+
plt.title("Detections Over Time")
|
147 |
+
plt.xlabel("Frame")
|
148 |
+
plt.ylabel("Count")
|
149 |
+
plt.grid(True)
|
150 |
+
plt.tight_layout()
|
151 |
+
chart_path = os.path.join(OUTPUT_DIR, "chart_temp.png")
|
152 |
+
plt.savefig(chart_path)
|
153 |
+
plt.close()
|
154 |
+
return chart_path
|
155 |
+
|
156 |
+
# Function to generate a single ZIP report containing all results
|
157 |
+
def generate_single_report(output_path, detected_issues, flight_logs, metrics, chart_path, map_path):
|
158 |
+
try:
|
159 |
+
# Create a directory for the report files
|
160 |
+
report_dir = os.path.join(OUTPUT_DIR, "final_report")
|
161 |
+
os.makedirs(report_dir, exist_ok=True)
|
162 |
+
|
163 |
+
# Copy the processed video
|
164 |
+
shutil.copy(output_path, os.path.join(report_dir, "processed_video.mp4"))
|
165 |
+
|
166 |
+
# Save the metrics JSON
|
167 |
+
metrics_json_path = os.path.join(report_dir, "metrics.json")
|
168 |
+
with open(metrics_json_path, 'w') as json_file:
|
169 |
+
json.dump(metrics, json_file, indent=2)
|
170 |
+
|
171 |
+
# Zip all captured frames
|
172 |
+
images_zip_path = zip_directory(CAPTURED_FRAMES_DIR, os.path.join(report_dir, "captured_frames.zip"))
|
173 |
+
|
174 |
+
# Zip the flight logs
|
175 |
+
logs_zip_path = zip_directory(FLIGHT_LOG_DIR, os.path.join(report_dir, "flight_logs.zip"))
|
176 |
+
|
177 |
+
# Save the detection trend chart
|
178 |
+
if chart_path:
|
179 |
+
shutil.copy(chart_path, os.path.join(report_dir, "detection_trend_chart.png"))
|
180 |
+
|
181 |
+
# Save the issue locations map
|
182 |
+
if map_path:
|
183 |
+
shutil.copy(map_path, os.path.join(report_dir, "issue_locations_map.png"))
|
184 |
+
|
185 |
+
# Create a ZIP of the entire report folder
|
186 |
+
zip_path = os.path.join(OUTPUT_DIR, "final_report.zip")
|
187 |
+
shutil.make_archive(zip_path.replace('.zip', ''), 'zip', report_dir)
|
188 |
+
|
189 |
+
# Clean up the report directory after zipping
|
190 |
+
shutil.rmtree(report_dir)
|
191 |
+
|
192 |
+
return zip_path
|
193 |
+
except Exception as e:
|
194 |
+
logging.error(f"Error generating single report: {str(e)}")
|
195 |
+
log_entries.append(f"Error generating single report: {str(e)}")
|
196 |
+
return ""
|
197 |
+
|
198 |
+
# Video processing function
|
199 |
+
def process_video(video, resize_width=4000, resize_height=3000, frame_skip=5):
|
200 |
+
global frame_count, last_metrics, detected_counts, detected_issues, gps_coordinates, log_entries
|
201 |
frame_count = 0
|
202 |
detected_counts.clear()
|
203 |
detected_issues.clear()
|
204 |
gps_coordinates.clear()
|
205 |
log_entries.clear()
|
206 |
+
last_metrics = {}
|
207 |
+
|
208 |
+
if video is None:
|
209 |
+
log_entries.append("Error: No video uploaded")
|
210 |
+
logging.error("No video uploaded")
|
211 |
+
return None, json.dumps({"error": "No video uploaded"}, indent=2), "\n".join(log_entries), [], None, None, None, None, None, None
|
212 |
|
213 |
+
start_time = time.time()
|
214 |
cap = cv2.VideoCapture(video)
|
215 |
if not cap.isOpened():
|
216 |
+
log_entries.append("Error: Could not open video file")
|
217 |
logging.error("Could not open video file")
|
218 |
+
return None, json.dumps({"error": "Could not open video file"}, indent=2), "\n".join(log_entries), [], None, None, None, None, None, None
|
219 |
|
220 |
+
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
221 |
+
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
222 |
+
input_resolution = frame_width * frame_height
|
223 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
224 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
225 |
+
expected_duration = total_frames / fps if fps > 0 else 0
|
226 |
+
log_entries.append(f"Input video: {frame_width}x{frame_height} ({input_resolution/1e6:.2f}MP), {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds, Frame skip: {frame_skip}")
|
227 |
+
logging.info(f"Input video: {frame_width}x{frame_height} ({input_resolution/1e6:.2f}MP), {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds, Frame skip: {frame_skip}")
|
228 |
+
print(f"Input video: {frame_width}x{frame_height} ({input_resolution/1e6:.2f}MP), {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds, Frame skip: {frame_skip}")
|
229 |
|
230 |
+
out_width, out_height = resize_width, resize_height
|
231 |
+
output_path = os.path.join(OUTPUT_DIR, "processed_output.mp4")
|
232 |
+
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (out_width, out_height))
|
233 |
+
if not out.isOpened():
|
234 |
+
log_entries.append("Error: Failed to initialize mp4v codec")
|
235 |
+
logging.error("Failed to initialize mp4v codec")
|
236 |
+
cap.release()
|
237 |
+
return None, json.dumps({"error": "mp4v codec failed"}, indent=2), "\n".join(log_entries), [], None, None, None, None, None, None
|
238 |
|
239 |
+
processed_frames = 0
|
240 |
all_detections = []
|
241 |
+
frame_times = []
|
242 |
+
inference_times = []
|
243 |
+
resize_times = []
|
244 |
+
io_times = []
|
245 |
+
detection_frame_count = 0
|
246 |
+
output_frame_count = 0
|
247 |
+
last_annotated_frame = None
|
248 |
+
data_lake_submission = {
|
249 |
+
"images": [],
|
250 |
+
"flight_logs": [],
|
251 |
+
"analytics": [],
|
252 |
+
"metrics": {}
|
253 |
+
}
|
254 |
|
255 |
while True:
|
256 |
ret, frame = cap.read()
|
257 |
if not ret:
|
258 |
break
|
259 |
frame_count += 1
|
260 |
+
if frame_count % frame_skip != 0:
|
261 |
+
continue
|
262 |
+
processed_frames += 1
|
263 |
+
frame_start = time.time()
|
264 |
+
|
265 |
+
# Resize
|
266 |
+
resize_start = time.time()
|
267 |
+
frame = cv2.resize(frame, (out_width, out_height))
|
268 |
+
resize_times.append((time.time() - resize_start) * 1000)
|
269 |
+
|
270 |
+
if not check_image_quality(frame, input_resolution):
|
271 |
+
log_entries.append(f"Frame {frame_count}: Skipped due to low resolution")
|
272 |
+
continue
|
273 |
+
|
274 |
+
# Inference
|
275 |
+
inference_start = time.time()
|
276 |
+
results = model(frame, verbose=False, conf=0.5, iou=0.7)
|
277 |
annotated_frame = results[0].plot()
|
278 |
+
inference_times.append((time.time() - inference_start) * 1000)
|
279 |
+
|
280 |
+
frame_timestamp = frame_count / fps if fps > 0 else 0
|
281 |
+
timestamp_str = f"{int(frame_timestamp // 60)}:{int(frame_timestamp % 60):02d}"
|
282 |
|
|
|
283 |
gps_coord = [17.385044 + (frame_count * 0.0001), 78.486671 + (frame_count * 0.0001)]
|
284 |
gps_coordinates.append(gps_coord)
|
285 |
|
286 |
+
io_start = time.time()
|
287 |
frame_detections = []
|
288 |
for detection in results[0].boxes:
|
289 |
+
cls = int(detection.cls)
|
290 |
+
conf = float(detection.conf)
|
291 |
+
box = detection.xyxy[0].cpu().numpy().astype(int).tolist()
|
292 |
+
label = model.names[cls]
|
293 |
if label in DETECTION_CLASSES:
|
294 |
+
frame_detections.append({
|
295 |
+
"label": label,
|
296 |
+
"box": box,
|
297 |
+
"conf": conf,
|
298 |
+
"gps": gps_coord,
|
299 |
+
"timestamp": timestamp_str
|
300 |
+
})
|
301 |
+
log_message = f"Frame {frame_count} at {timestamp_str}: Detected {label} with confidence {conf:.2f}"
|
302 |
+
log_entries.append(log_message)
|
303 |
+
logging.info(log_message)
|
304 |
|
305 |
if frame_detections:
|
306 |
+
detection_frame_count += 1
|
307 |
+
if detection_frame_count % SAVE_IMAGE_INTERVAL == 0:
|
308 |
+
captured_frame_path = os.path.join(CAPTURED_FRAMES_DIR, f"detected_{frame_count:06d}.jpg")
|
309 |
+
if cv2.imwrite(captured_frame_path, annotated_frame):
|
310 |
+
if write_geotag(captured_frame_path, gps_coord):
|
311 |
+
detected_issues.append(captured_frame_path)
|
312 |
+
data_lake_submission["images"].append({
|
313 |
+
"path": captured_frame_path,
|
314 |
+
"frame": frame_count,
|
315 |
+
"gps": gps_coord,
|
316 |
+
"timestamp": timestamp_str
|
317 |
+
})
|
318 |
+
if len(detected_issues) > 100:
|
319 |
+
detected_issues.pop(0)
|
320 |
+
else:
|
321 |
+
log_entries.append(f"Frame {frame_count}: Geotagging failed")
|
322 |
+
else:
|
323 |
+
log_entries.append(f"Error: Failed to save {captured_frame_path}")
|
324 |
+
logging.error(f"Failed to save {captured_frame_path}")
|
325 |
|
326 |
+
flight_log_path = write_flight_log(frame_count, gps_coord, timestamp_str)
|
327 |
+
if flight_log_path:
|
328 |
+
data_lake_submission["flight_logs"].append({
|
329 |
+
"path": flight_log_path,
|
330 |
+
"frame": frame_count
|
331 |
+
})
|
332 |
|
333 |
+
io_times.append((time.time() - io_start) * 1000)
|
|
|
|
|
|
|
|
|
|
|
|
|
334 |
|
335 |
out.write(annotated_frame)
|
336 |
+
output_frame_count += 1
|
337 |
+
last_annotated_frame = annotated_frame
|
338 |
+
if frame_skip > 1:
|
339 |
+
for _ in range(frame_skip - 1):
|
340 |
+
out.write(annotated_frame)
|
341 |
+
output_frame_count += 1
|
342 |
+
|
343 |
+
detected_counts.append(len(frame_detections))
|
344 |
+
all_detections.extend(frame_detections)
|
345 |
+
|
346 |
+
frame_time = (time.time() - frame_start) * 1000
|
347 |
+
frame_times.append(frame_time)
|
348 |
+
log_entries.append(f"Frame {frame_count}: Processed in {frame_time:.2f} ms (Resize: {resize_times[-1]:.2f} ms, Inference: {inference_times[-1]:.2f} ms, I/O: {io_times[-1]:.2f} ms)")
|
349 |
+
if len(log_entries) > 50:
|
350 |
+
log_entries.pop(0)
|
351 |
+
|
352 |
+
if time.time() - start_time > 600:
|
353 |
+
log_entries.append("Error: Processing timeout after 600 seconds")
|
354 |
+
logging.error("Processing timeout after 600 seconds")
|
355 |
+
break
|
356 |
+
|
357 |
+
while output_frame_count < total_frames and last_annotated_frame is not None:
|
358 |
+
out.write(last_annotated_frame)
|
359 |
+
output_frame_count += 1
|
360 |
+
|
361 |
+
last_metrics = update_metrics(all_detections)
|
362 |
+
data_lake_submission["metrics"] = last_metrics
|
363 |
+
data_lake_submission["frame_count"] = frame_count
|
364 |
+
data_lake_submission["gps_coordinates"] = gps_coordinates[-1] if gps_coordinates else [0, 0]
|
365 |
+
|
366 |
+
submission_json_path = os.path.join(OUTPUT_DIR, "data_lake_submission.json")
|
367 |
+
try:
|
368 |
+
with open(submission_json_path, 'w') as f:
|
369 |
+
json.dump(data_lake_submission, f, indent=2)
|
370 |
+
log_entries.append(f"Submission JSON saved: {submission_json_path}")
|
371 |
+
logging.info(f"Submission JSON saved: {submission_json_path}")
|
372 |
+
except Exception as e:
|
373 |
+
log_entries.append(f"Error: Failed to save submission JSON: {str(e)}")
|
374 |
+
logging.error(f"Failed to save submission JSON: {str(e)}")
|
375 |
|
376 |
cap.release()
|
377 |
out.release()
|
378 |
|
379 |
+
cap = cv2.VideoCapture(output_path)
|
380 |
+
output_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
381 |
+
output_fps = cap.get(cv2.CAP_PROP_FPS)
|
382 |
+
output_duration = output_frames / output_fps if output_fps > 0 else 0
|
383 |
+
cap.release()
|
|
|
384 |
|
385 |
+
total_time = time.time() - start_time
|
386 |
+
avg_frame_time = sum(frame_times) / len(frame_times) if frame_times else 0
|
387 |
+
avg_resize_time = sum(resize_times) / len(resize_times) if resize_times else 0
|
388 |
+
avg_inference_time = sum(inference_times) / len(inference_times) if inference_times else 0
|
389 |
+
avg_io_time = sum(io_times) / len(io_times) if io_times else 0
|
390 |
+
log_entries.append(f"Output video: {output_frames} frames, {output_fps:.2f} FPS, {output_duration:.2f} seconds")
|
391 |
+
logging.info(f"Output video: {output_frames} frames, {output_fps:.2f} FPS, {output_duration:.2f} seconds")
|
392 |
+
log_entries.append(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms (Avg Resize: {avg_resize_time:.2f} ms, Avg Inference: {avg_inference_time:.2f} ms, Avg I/O: {avg_io_time:.2f} ms), Detection frames: {detection_frame_count}, Output frames: {output_frame_count}")
|
393 |
+
logging.info(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms (Avg Resize: {avg_resize_time:.2f} ms, Avg Inference: {avg_inference_time:.2f} ms, Avg I/O: {avg_io_time:.2f} ms), Detection frames: {detection_frame_count}, Output frames: {output_frame_count}")
|
394 |
+
print(f"Output video: {output_frames} frames, {output_fps:.2f} FPS, {output_duration:.2f} seconds")
|
395 |
+
print(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms, Detection frames: {detection_frame_count}, Output frames: {output_frame_count}")
|
396 |
|
397 |
+
chart_path = generate_line_chart()
|
398 |
+
map_path = generate_map(gps_coordinates[-5:], all_detections)
|
399 |
|
400 |
+
# Generate the single ZIP report
|
401 |
+
final_report_zip = generate_single_report(
|
402 |
+
output_path,
|
403 |
+
detected_issues,
|
404 |
+
flight_logs,
|
405 |
+
last_metrics,
|
406 |
+
chart_path,
|
407 |
+
map_path
|
408 |
+
)
|
409 |
|
410 |
+
return final_report_zip
|
411 |
+
# Gradio interface
|
412 |
+
with gr.Blocks(theme=gr.themes.Soft(primary_hue="orange")) as iface:
|
413 |
+
gr.Markdown("# NHAI Road Defect Detection Dashboard")
|
414 |
+
with gr.Row():
|
415 |
+
with gr.Column(scale=3):
|
416 |
+
video_input = gr.Video(label="Upload Video (12MP recommended for NHAI compliance)")
|
417 |
+
width_slider = gr.Slider(320, 4000, value=4000, label="Output Width", step=1)
|
418 |
+
height_slider = gr.Slider(240, 3000, value=3000, label="Output Height", step=1)
|
419 |
+
skip_slider = gr.Slider(1, 10, value=5, label="Frame Skip", step=1)
|
420 |
+
process_btn = gr.Button("Process Video", variant="primary")
|
421 |
+
with gr.Column(scale=1):
|
422 |
+
metrics_output = gr.Textbox(label="Detection Metrics", lines=5, interactive=False)
|
423 |
+
with gr.Row():
|
424 |
+
video_output = gr.Video(label="Processed Video")
|
425 |
+
issue_gallery = gr.Gallery(label="Detected Issues", columns=4, height="auto", object_fit="contain")
|
426 |
+
with gr.Row():
|
427 |
+
chart_output = gr.Image(label="Detection Trend")
|
428 |
+
map_output = gr.Image(label="Issue Locations Map")
|
429 |
+
with gr.Row():
|
430 |
+
logs_output = gr.Textbox(label="Logs", lines=5, interactive=False)
|
431 |
+
with gr.Row():
|
432 |
+
gr.Markdown("## Download Results")
|
433 |
+
with gr.Row():
|
434 |
+
zip_download = gr.File(label="Download Report (ZIP)")
|
435 |
|
436 |
+
process_btn.click(
|
437 |
+
fn=process_video,
|
438 |
+
inputs=[video_input, width_slider, height_slider, skip_slider],
|
439 |
+
outputs=[zip_download]
|
440 |
+
)
|
441 |
|
442 |
+
if __name__ == "__main__":
|
443 |
+
iface.launch()
|