Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -163,144 +163,244 @@ def generate_report(
|
|
163 |
io_times: List[float]
|
164 |
) -> str:
|
165 |
log_entries.append("Generating report...")
|
166 |
-
report_path = os.path.join(OUTPUT_DIR, f"drone_analysis_report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.
|
167 |
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
|
168 |
-
report_content = [
|
169 |
-
"# NHAI Drone Survey Analysis Report",
|
170 |
-
"",
|
171 |
-
"## Project Details",
|
172 |
-
"- Project Name: NH-44 Delhi-Hyderabad Section (Package XYZ)",
|
173 |
-
"- Highway Section: Km 100 to Km 150",
|
174 |
-
"- State: Telangana",
|
175 |
-
"- Region: South",
|
176 |
-
f"- Survey Date: {datetime.now().strftime('%Y-%m-%d')}",
|
177 |
-
"- Drone Service Provider: ABC Drone Services Pvt. Ltd.",
|
178 |
-
"- Technology Service Provider: XYZ AI Analytics Ltd.",
|
179 |
-
f"- Work Order Reference: Data Lake WO-{datetime.now().strftime('%Y-%m-%d')}-XYZ",
|
180 |
-
"- Report Prepared By: Nagasurendra, Data Analyst",
|
181 |
-
f"- Report Date: {datetime.now().strftime('%Y-%m-%d')}",
|
182 |
-
"",
|
183 |
-
"## 1. Introduction",
|
184 |
-
"This report consolidates drone survey results for NH-44 (Km 100–150) under Operations & Maintenance, per NHAI Policy Circular No. 18.98/2024, detecting potholes and cracks using YOLOv8 for Monthly Progress Report integration.",
|
185 |
-
"",
|
186 |
-
"## 2. Drone Survey Metadata",
|
187 |
-
"- Drone Speed: 5 m/s",
|
188 |
-
"- Drone Height: 60 m",
|
189 |
-
"- Camera Sensor: RGB, 12 MP",
|
190 |
-
"- Recording Type: JPEG, 90° nadir",
|
191 |
-
"- Image Overlap: 85%",
|
192 |
-
"- Flight Pattern: Single lap, ROW centered",
|
193 |
-
"- Geotagging: Enabled",
|
194 |
-
"- Satellite Lock: 12 satellites",
|
195 |
-
"- Terrain Follow Mode: Enabled",
|
196 |
-
"",
|
197 |
-
"## 3. Quality Check Results",
|
198 |
-
f"- Resolution: 4000x3000 (12 MP)",
|
199 |
-
"- Overlap: 85%",
|
200 |
-
"- Camera Angle: 90° nadir",
|
201 |
-
"- Drone Speed: ≤ 5 m/s",
|
202 |
-
"- Geotagging: 100% compliant",
|
203 |
-
"- QC Status: Passed",
|
204 |
-
"",
|
205 |
-
"## 4. AI/ML Analytics",
|
206 |
-
f"- Total Frames Processed: {frame_count}",
|
207 |
-
f"- Detection Frames: {detection_frame_count} ({detection_frame_count/frame_count*100:.2f}%)",
|
208 |
-
f"- Total Detections: {metrics['total_detections']}",
|
209 |
-
" - Breakdown:"
|
210 |
-
]
|
211 |
|
|
|
|
|
212 |
for item in metrics.get("items", []):
|
213 |
percentage = (item["count"] / metrics["total_detections"] * 100) if metrics["total_detections"] > 0 else 0
|
214 |
-
|
215 |
-
report_content.extend([
|
216 |
-
f"- Processing Time: {total_time:.2f} seconds",
|
217 |
-
f"- Average Frame Time: {sum(frame_times)/len(frame_times):.2f} ms" if frame_times else "- Average Frame Time: N/A",
|
218 |
-
f"- Average Resize Time: {sum(resize_times)/len(resize_times):.2f} ms" if resize_times else "- Average Resize Time: N/A",
|
219 |
-
f"- Average Inference Time: {sum(inference_times)/len(inference_times):.2f} ms" if inference_times else "- Average Inference Time: N/A",
|
220 |
-
f"- Average I/O Time: {sum(io_times)/len(io_times):.2f} ms" if io_times else "- Average I/O Time: N/A",
|
221 |
-
f"- Timestamp: {metrics.get('timestamp', 'N/A')}",
|
222 |
-
"- Summary: Potholes and cracks detected in high-traffic segments.",
|
223 |
-
"",
|
224 |
-
"## 5. Output File Structure",
|
225 |
-
"- ZIP file contains:",
|
226 |
-
" - `drone_analysis_report_<timestamp>.md`: This report",
|
227 |
-
" - `outputs/processed_output.mp4`: Processed video with annotations",
|
228 |
-
" - `outputs/chart_<timestamp>.png`: Detection trend chart",
|
229 |
-
" - `outputs/map_<timestamp>.png`: Issue locations map",
|
230 |
-
" - `captured_frames/detected_<frame>.jpg`: Geotagged images for detected issues",
|
231 |
-
" - `flight_logs/flight_log_<frame>.csv`: Flight logs matching image frames",
|
232 |
-
"- Note: Images and logs share frame numbers (e.g., `detected_000001.jpg` corresponds to `flight_log_000001.csv`).",
|
233 |
-
"",
|
234 |
-
"## 6. Geotagged Images",
|
235 |
-
f"- Total Images: {len(detected_issues)}",
|
236 |
-
f"- Storage: Data Lake `/project_xyz/images/{datetime.now().strftime('%Y-%m-%d')}`",
|
237 |
-
"",
|
238 |
-
"| Frame | Issue Type | GPS (Lat, Lon) | Timestamp | Confidence | Image Path |",
|
239 |
-
"|-------|------------|----------------|-----------|------------|------------|"
|
240 |
-
])
|
241 |
|
|
|
|
|
242 |
for detection in all_detections[:100]:
|
243 |
-
|
244 |
-
|
|
|
|
|
|
|
|
|
245 |
)
|
246 |
|
247 |
-
|
248 |
-
|
249 |
-
"## 7. Flight Logs",
|
250 |
-
f"- Total Logs: {len(detected_issues)}",
|
251 |
-
f"- Storage: Data Lake `/project_xyz/flight_logs/{datetime.now().strftime('%Y-%m-%d')}`",
|
252 |
-
"",
|
253 |
-
"| Frame | Timestamp | Latitude | Longitude | Speed (m/s) | Satellites | Altitude (m) | Log Path |",
|
254 |
-
"|-------|-----------|----------|-----------|-------------|------------|--------------|----------|"
|
255 |
-
])
|
256 |
-
|
257 |
for detection in all_detections[:100]:
|
258 |
log_path = f"flight_logs/flight_log_{detection['frame']:06d}.csv"
|
259 |
-
|
260 |
-
f"
|
|
|
|
|
261 |
)
|
262 |
|
263 |
-
|
264 |
-
|
265 |
-
"## 8. Processed Video",
|
266 |
-
f"- Path: outputs/processed_output.mp4",
|
267 |
-
f"- Frames: {output_frames}",
|
268 |
-
f"- FPS: {output_fps:.2f}",
|
269 |
-
f"- Duration: {output_duration:.2f} seconds",
|
270 |
-
"",
|
271 |
-
"## 9. Visualizations",
|
272 |
-
f"- Detection Trend Chart: outputs/chart_{timestamp}.png",
|
273 |
-
f"- Issue Locations Map: outputs/map_{timestamp}.png",
|
274 |
-
"",
|
275 |
-
"## 10. Processing Timestamps",
|
276 |
-
f"- Total Processing Time: {total_time:.2f} seconds",
|
277 |
-
"- Log Entries (Last 10):"
|
278 |
-
])
|
279 |
-
|
280 |
for entry in log_entries[-10:]:
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
|
301 |
try:
|
302 |
with open(report_path, 'w') as f:
|
303 |
-
f.write(
|
304 |
log_entries.append(f"Report saved: {report_path}")
|
305 |
return report_path
|
306 |
except Exception as e:
|
@@ -415,6 +515,7 @@ def process_video(video, resize_width=4000, resize_height=3000, frame_skip=5):
|
|
415 |
|
416 |
io_times.append((time.time() - io_start) * 1000)
|
417 |
|
|
|
418 |
out.write(annotated_frame)
|
419 |
output_frame_count += 1
|
420 |
last_annotated_frame = annotated_frame
|
@@ -504,7 +605,7 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="orange")) as iface:
|
|
504 |
video_output = gr.Video(label="Processed Video")
|
505 |
issue_gallery = gr.Gallery(label="Detected Issues", columns=4, height="auto", object_fit="contain")
|
506 |
with gr.Row():
|
507 |
-
chart_output = gr.Image(label="Detection Trend")
|
508 |
map_output = gr.Image(label="Issue Locations Map")
|
509 |
with gr.Row():
|
510 |
logs_output = gr.Textbox(label="Logs", lines=5, interactive=False)
|
|
|
163 |
io_times: List[float]
|
164 |
) -> str:
|
165 |
log_entries.append("Generating report...")
|
166 |
+
report_path = os.path.join(OUTPUT_DIR, f"drone_analysis_report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.tex")
|
167 |
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
|
169 |
+
# Prepare items for the breakdown
|
170 |
+
items = []
|
171 |
for item in metrics.get("items", []):
|
172 |
percentage = (item["count"] / metrics["total_detections"] * 100) if metrics["total_detections"] > 0 else 0
|
173 |
+
items.append(f"\\item {item['type']}: {item['count']} ({percentage:.2f}\\%)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
+
# Prepare image rows with embedded images
|
176 |
+
image_rows = []
|
177 |
for detection in all_detections[:100]:
|
178 |
+
image_basename = os.path.basename(detection['path'])
|
179 |
+
image_rows.append(
|
180 |
+
f"{detection['frame']:06d} & {detection['label']} & "
|
181 |
+
f"({detection['gps'][0]:.6f}, {detection['gps'][1]:.6f}) & "
|
182 |
+
f"{detection['timestamp']} & {detection['conf']:.2f} & "
|
183 |
+
f"\\includegraphics[width=4cm, height=3cm, keepaspectratio]{{{image_basename}}} \\\\"
|
184 |
)
|
185 |
|
186 |
+
# Prepare flight log rows
|
187 |
+
log_rows = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
for detection in all_detections[:100]:
|
189 |
log_path = f"flight_logs/flight_log_{detection['frame']:06d}.csv"
|
190 |
+
log_rows.append(
|
191 |
+
f"{detection['frame']:06d} & {detection['timestamp']} & "
|
192 |
+
f"{detection['gps'][0]:.6f} & {detection['gps'][1]:.6f} & "
|
193 |
+
f"5.0 & 12 & 60 & \\texttt{{{log_path}}} \\\\"
|
194 |
)
|
195 |
|
196 |
+
# Prepare log entries
|
197 |
+
log_entries_str = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
for entry in log_entries[-10:]:
|
199 |
+
log_entries_str.append(f"\\item {entry}")
|
200 |
+
|
201 |
+
# Calculate average times
|
202 |
+
avg_frame_time = sum(frame_times) / len(frame_times) if frame_times else 0
|
203 |
+
avg_resize_time = sum(resize_times) / len(resize_times) if resize_times else 0
|
204 |
+
avg_inference_time = sum(inference_times) / len(inference_times) if inference_times else 0
|
205 |
+
avg_io_time = sum(io_times) / len(io_times) if io_times else 0
|
206 |
+
|
207 |
+
# LaTeX template
|
208 |
+
latex_template = r"""
|
209 |
+
\documentclass[a4paper,12pt]{article}
|
210 |
+
\usepackage[utf8]{inputenc}
|
211 |
+
\usepackage[T1]{fontenc}
|
212 |
+
\usepackage{geometry}
|
213 |
+
\geometry{margin=1in}
|
214 |
+
\usepackage{graphicx}
|
215 |
+
\usepackage{booktabs}
|
216 |
+
\usepackage{longtable}
|
217 |
+
\usepackage{hyperref}
|
218 |
+
\usepackage{xcolor}
|
219 |
+
\usepackage{parskip}
|
220 |
+
\setlength{\parskip}{0.5em}
|
221 |
+
\usepackage{noto}
|
222 |
+
\graphicspath{{./captured_frames/}}
|
223 |
+
|
224 |
+
\begin{document}
|
225 |
+
|
226 |
+
% Title and project details
|
227 |
+
\section*{NHAI Drone Survey Analysis Report}
|
228 |
+
|
229 |
+
\subsection*{Project Details}
|
230 |
+
\begin{itemize}
|
231 |
+
\item \textbf{Project Name:} NH-44 Delhi-Hyderabad Section (Package XYZ)
|
232 |
+
\item \textbf{Highway Section:} Km 100 to Km 150
|
233 |
+
\item \textbf{State:} Telangana
|
234 |
+
\item \textbf{Region:} South
|
235 |
+
\item \textbf{Survey Date:} \today
|
236 |
+
\item \textbf{Drone Service Provider:} ABC Drone Services Pvt. Ltd.
|
237 |
+
\item \textbf{Technology Service Provider:} XYZ AI Analytics Ltd.
|
238 |
+
\item \textbf{Work Order Reference:} Data Lake WO-\today-XYZ
|
239 |
+
\item \textbf{Report Prepared By:} Nagasurendra, Data Analyst
|
240 |
+
\item \textbf{Report Date:} \today
|
241 |
+
\end{itemize}
|
242 |
+
|
243 |
+
\section{Introduction}
|
244 |
+
This report consolidates drone survey results for NH-44 (Km 100--150) under Operations \& Maintenance, per NHAI Policy Circular No. 18.98/2024, detecting potholes and cracks using YOLOv8 for Monthly Progress Report integration.
|
245 |
+
|
246 |
+
\section{Drone Survey Metadata}
|
247 |
+
\begin{itemize}
|
248 |
+
\item \textbf{Drone Speed:} 5 m/s
|
249 |
+
\item \textbf{Drone Height:} 60 m
|
250 |
+
\item \textbf{Camera Sensor:} RGB, 12 MP
|
251 |
+
\item \textbf{Recording Type:} JPEG, 90° nadir
|
252 |
+
\item \textbf{Image Overlap:} 85\%
|
253 |
+
\item \textbf{Flight Pattern:} Single lap, ROW centered
|
254 |
+
\item \textbf{Geotagging:} Enabled
|
255 |
+
\item \textbf{Satellite Lock:} 12 satellites
|
256 |
+
\item \textbf{Terrain Follow Mode:} Enabled
|
257 |
+
\end{itemize}
|
258 |
+
|
259 |
+
\section{Quality Check Results}
|
260 |
+
\begin{itemize}
|
261 |
+
\item \textbf{Resolution:} 4000x3000 (12 MP)
|
262 |
+
\item \textbf{Overlap:} 85\%
|
263 |
+
\item \textbf{Camera Angle:} 90° nadir
|
264 |
+
\item \textbf{Drone Speed:} $\leq$ 5 m/s
|
265 |
+
\item \textbf{Geotagging:} 100\% compliant
|
266 |
+
\item \textbf{QC Status:} Passed
|
267 |
+
\end{itemize}
|
268 |
+
|
269 |
+
\section{AI/ML Analytics}
|
270 |
+
\begin{itemize}
|
271 |
+
\item \textbf{Total Frames Processed:} {frame_count}
|
272 |
+
\item \textbf{Detection Frames:} {detection_frame_count} ({detection_percentage:.2f}\%)
|
273 |
+
\item \textbf{Total Detections:} {total_detections}
|
274 |
+
\item \textbf{Breakdown:}
|
275 |
+
\begin{itemize}
|
276 |
+
{items}
|
277 |
+
\end{itemize}
|
278 |
+
\item \textbf{Processing Time:} {total_time:.2f} seconds
|
279 |
+
\item \textbf{Average Frame Time:} {avg_frame_time:.2f} ms
|
280 |
+
\item \textbf{Average Resize Time:} {avg_resize_time:.2f} ms
|
281 |
+
\item \textbf{Average Inference Time:} {avg_inference_time:.2f} ms
|
282 |
+
\item \textbf{Average I/O Time:} {avg_io_time:.2f} ms
|
283 |
+
\item \textbf{Timestamp:} {timestamp_str}
|
284 |
+
\item \textbf{Summary:} Potholes and cracks detected in high-traffic segments.
|
285 |
+
\end{itemize}
|
286 |
+
|
287 |
+
\section{Output File Structure}
|
288 |
+
\begin{itemize}
|
289 |
+
\item ZIP file contains:
|
290 |
+
\begin{itemize}
|
291 |
+
\item \texttt{drone_analysis_report_{timestamp}.pdf}: This report
|
292 |
+
\item \texttt{outputs/processed_output.mp4}: Processed video with annotations
|
293 |
+
\item \texttt{outputs/chart_{timestamp}.png}: Detection trend chart
|
294 |
+
\item \texttt{outputs/map_{timestamp}.png}: Issue locations map
|
295 |
+
\item \texttt{captured_frames/detected_<frame>.jpg}: Geotagged images for detected issues
|
296 |
+
\item \texttt{flight_logs/flight_log_<frame>.csv}: Flight logs matching image frames
|
297 |
+
\end{itemize}
|
298 |
+
\item \textbf{Note:} Images and logs share frame numbers (e.g., \texttt{detected_000001.jpg} corresponds to \texttt{flight_log_000001.csv}).
|
299 |
+
\end{itemize}
|
300 |
+
|
301 |
+
\section{Geotagged Images}
|
302 |
+
\begin{itemize}
|
303 |
+
\item \textbf{Total Images:} {total_images}
|
304 |
+
\item \textbf{Storage:} Data Lake \texttt{{/project_xyz/images/{date_str}}}
|
305 |
+
\end{itemize}
|
306 |
+
|
307 |
+
\begin{longtable}{c l c c c p{4cm}}
|
308 |
+
\toprule
|
309 |
+
\textbf{Frame} & \textbf{Issue Type} & \textbf{GPS (Lat, Lon)} & \textbf{Timestamp} & \textbf{Confidence} & \textbf{Image} \\
|
310 |
+
\midrule
|
311 |
+
\endhead
|
312 |
+
{image_rows}
|
313 |
+
\bottomrule
|
314 |
+
\end{longtable}
|
315 |
+
|
316 |
+
\section{Flight Logs}
|
317 |
+
\begin{itemize}
|
318 |
+
\item \textbf{Total Logs:} {total_logs}
|
319 |
+
\item \textbf{Storage:} Data Lake \texttt{{/project_xyz/flight_logs/{date_str}}}
|
320 |
+
\end{itemize}
|
321 |
+
|
322 |
+
\begin{longtable}{c c c c c c c l}
|
323 |
+
\toprule
|
324 |
+
\textbf{Frame} & \textbf{Timestamp} & \textbf{Latitude} & \textbf{Longitude} & \textbf{Speed (m/s)} & \textbf{Satellites} & \textbf{Altitude (m)} & \textbf{Log Path} \\
|
325 |
+
\midrule
|
326 |
+
\endhead
|
327 |
+
{log_rows}
|
328 |
+
\bottomrule
|
329 |
+
\end{longtable}
|
330 |
+
|
331 |
+
\section{Processed Video}
|
332 |
+
\begin{itemize}
|
333 |
+
\item \textbf{Path:} \texttt{outputs/processed_output.mp4}
|
334 |
+
\item \textbf{Frames:} {output_frames}
|
335 |
+
\item \textbf{FPS:} {output_fps:.2f}
|
336 |
+
\item \textbf{Duration:} {output_duration:.2f} seconds
|
337 |
+
\end{itemize}
|
338 |
+
|
339 |
+
\section{Visualizations}
|
340 |
+
\begin{itemize}
|
341 |
+
\item \textbf{Detection Trend Chart:} \texttt{outputs/chart_{timestamp}.png}
|
342 |
+
\item \textbf{Issue Locations Map:} \texttt{outputs/map_{timestamp}.png}
|
343 |
+
\end{itemize}
|
344 |
+
|
345 |
+
\section{Processing Timestamps}
|
346 |
+
\begin{itemize}
|
347 |
+
\item \textbf{Total Processing Time:} {total_time:.2f} seconds
|
348 |
+
\item \textbf{Log Entries (Last 10):}
|
349 |
+
\begin{itemize}
|
350 |
+
{log_entries}
|
351 |
+
\end{itemize}
|
352 |
+
\end{itemize}
|
353 |
+
|
354 |
+
\section{Stakeholder Validation}
|
355 |
+
\begin{itemize}
|
356 |
+
\item \textbf{AE/IE Comments:} [Pending]
|
357 |
+
\item \textbf{PD/RO Comments:} [Pending]
|
358 |
+
\end{itemize}
|
359 |
+
|
360 |
+
\section{Recommendations}
|
361 |
+
\begin{itemize}
|
362 |
+
\item Repair potholes in high-traffic segments.
|
363 |
+
\item Seal cracks to prevent degradation.
|
364 |
+
\item Schedule follow-up survey.
|
365 |
+
\end{itemize}
|
366 |
+
|
367 |
+
\section{Data Lake References}
|
368 |
+
\begin{itemize}
|
369 |
+
\item \textbf{Images:} \texttt{{/project_xyz/images/{date_str}}}
|
370 |
+
\item \textbf{Flight Logs:} \texttt{{/project_xyz/flight_logs/{date_str}}}
|
371 |
+
\item \textbf{Video:} \texttt{{/project_xyz/videos/processed_output_{date_str_no_dash}.mp4}}
|
372 |
+
\item \textbf{DAMS Dashboard:} \texttt{{/project_xyz/dams/{date_str}}}
|
373 |
+
\end{itemize}
|
374 |
+
|
375 |
+
\end{document}
|
376 |
+
"""
|
377 |
+
|
378 |
+
# Format the LaTeX template
|
379 |
+
report_content = latex_template.format(
|
380 |
+
frame_count=frame_count,
|
381 |
+
detection_frame_count=detection_frame_count,
|
382 |
+
detection_percentage=(detection_frame_count / frame_count * 100) if frame_count > 0 else 0,
|
383 |
+
total_detections=metrics['total_detections'],
|
384 |
+
items="\n ".join(items),
|
385 |
+
total_time=total_time,
|
386 |
+
avg_frame_time=avg_frame_time,
|
387 |
+
avg_resize_time=avg_resize_time,
|
388 |
+
avg_inference_time=avg_inference_time,
|
389 |
+
avg_io_time=avg_io_time,
|
390 |
+
timestamp_str=metrics.get('timestamp', 'N/A'),
|
391 |
+
timestamp=timestamp,
|
392 |
+
total_images=len(detected_issues),
|
393 |
+
total_logs=len(detected_issues),
|
394 |
+
date_str=datetime.now().strftime('%Y-%m-%d'),
|
395 |
+
date_str_no_dash=datetime.now().strftime('%Y%m%d'),
|
396 |
+
image_rows="\n ".join(image_rows),
|
397 |
+
log_rows="\n ".join(log_rows),
|
398 |
+
log_entries="\n ".join(log_entries_str)
|
399 |
+
)
|
400 |
|
401 |
try:
|
402 |
with open(report_path, 'w') as f:
|
403 |
+
f.write(report_content)
|
404 |
log_entries.append(f"Report saved: {report_path}")
|
405 |
return report_path
|
406 |
except Exception as e:
|
|
|
515 |
|
516 |
io_times.append((time.time() - io_start) * 1000)
|
517 |
|
518 |
+
torrents
|
519 |
out.write(annotated_frame)
|
520 |
output_frame_count += 1
|
521 |
last_annotated_frame = annotated_frame
|
|
|
605 |
video_output = gr.Video(label="Processed Video")
|
606 |
issue_gallery = gr.Gallery(label="Detected Issues", columns=4, height="auto", object_fit="contain")
|
607 |
with gr.Row():
|
608 |
+
chart_output = gr.Image(label-gate="Detection Trend")
|
609 |
map_output = gr.Image(label="Issue Locations Map")
|
610 |
with gr.Row():
|
611 |
logs_output = gr.Textbox(label="Logs", lines=5, interactive=False)
|