Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,13 +2,18 @@ import cv2
|
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
|
|
5 |
from ultralytics import YOLO
|
6 |
|
7 |
-
# Load YOLOv8 model
|
8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
model = YOLO('./data/best.pt') # Path to your model
|
10 |
model.to(device)
|
11 |
|
|
|
|
|
|
|
|
|
12 |
# Define the function that processes the uploaded video
|
13 |
def process_video(video):
|
14 |
# video is now the file path string, not a file object
|
@@ -23,6 +28,10 @@ def process_video(video):
|
|
23 |
new_width, new_height = 640, 480 # Resize to 640x480 resolution
|
24 |
frame_width, frame_height = new_width, new_height
|
25 |
|
|
|
|
|
|
|
|
|
26 |
while True:
|
27 |
# Read a frame from the video
|
28 |
ret, frame = input_video.read()
|
@@ -37,24 +46,51 @@ def process_video(video):
|
|
37 |
|
38 |
# Check if any object was detected
|
39 |
if len(results[0].boxes) > 0: # If there are detected objects
|
40 |
-
#
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
48 |
|
49 |
# Release resources
|
50 |
input_video.release()
|
51 |
|
52 |
-
#
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
# Launch the interface
|
60 |
-
|
|
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
from ultralytics import YOLO
|
7 |
|
8 |
+
# Load YOLOv8 model
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
model = YOLO('./data/best.pt') # Path to your model
|
11 |
model.to(device)
|
12 |
|
13 |
+
# Store frames with detected objects
|
14 |
+
frames_with_detections = []
|
15 |
+
detection_counts = []
|
16 |
+
|
17 |
# Define the function that processes the uploaded video
|
18 |
def process_video(video):
|
19 |
# video is now the file path string, not a file object
|
|
|
28 |
new_width, new_height = 640, 480 # Resize to 640x480 resolution
|
29 |
frame_width, frame_height = new_width, new_height
|
30 |
|
31 |
+
# Track detected objects by their bounding box coordinates
|
32 |
+
detected_boxes = set()
|
33 |
+
total_detections = 0
|
34 |
+
|
35 |
while True:
|
36 |
# Read a frame from the video
|
37 |
ret, frame = input_video.read()
|
|
|
46 |
|
47 |
# Check if any object was detected
|
48 |
if len(results[0].boxes) > 0: # If there are detected objects
|
49 |
+
# Get the bounding boxes for each detected object
|
50 |
+
boxes = results[0].boxes.xyxy.cpu().numpy() # Get xyxy coordinates
|
51 |
+
|
52 |
+
# Loop through each detection and only show the frame for new objects
|
53 |
+
for box in boxes:
|
54 |
+
x1, y1, x2, y2 = box
|
55 |
+
detection_box = (x1, y1, x2, y2)
|
56 |
+
|
57 |
+
# Check if this box was already processed
|
58 |
+
if detection_box not in detected_boxes:
|
59 |
+
# Add the box to the set to avoid repeating the detection
|
60 |
+
detected_boxes.add(detection_box)
|
61 |
+
total_detections += 1
|
62 |
|
63 |
+
# Annotate the frame with bounding boxes
|
64 |
+
annotated_frame = results[0].plot() # Plot the frame with bounding boxes
|
65 |
|
66 |
+
# Convert the annotated frame to RGB format for displaying
|
67 |
+
annotated_frame_rgb = cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB)
|
68 |
+
|
69 |
+
# Add this frame to the list of frames with detections
|
70 |
+
frames_with_detections.append(annotated_frame_rgb)
|
71 |
+
detection_counts.append(total_detections)
|
72 |
|
73 |
# Release resources
|
74 |
input_video.release()
|
75 |
|
76 |
+
# Return the frames with detections for display
|
77 |
+
return frames_with_detections
|
78 |
+
|
79 |
+
# Create a Gradio Blocks interface
|
80 |
+
with gr.Blocks() as demo:
|
81 |
+
# Define a file input for video upload
|
82 |
+
video_input = gr.Video(label="Upload Video")
|
83 |
+
|
84 |
+
# Define the output area to show processed frames
|
85 |
+
gallery_output = gr.Gallery(label="Detection Album").style(columns=3) # Display images in a row (album)
|
86 |
+
|
87 |
+
# Define the function to update frames in the album
|
88 |
+
def update_gallery(video):
|
89 |
+
detected_frames = process_video(video)
|
90 |
+
return detected_frames # Return all frames with detections
|
91 |
+
|
92 |
+
# Connect the video input to the gallery update
|
93 |
+
video_input.change(update_gallery, inputs=video_input, outputs=gallery_output)
|
94 |
|
95 |
# Launch the interface
|
96 |
+
demo.launch()
|