Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,105 +1,48 @@
|
|
1 |
-
|
2 |
-
import os
|
3 |
-
|
4 |
-
# Define the correct path to config.yaml (in the root directory)
|
5 |
-
config_path = './config.yaml' # Adjust based on the actual path to your config.yaml
|
6 |
-
|
7 |
-
# Load YOLO model
|
8 |
-
model = YOLO("yolo11n.yaml") # You can choose a different model type like yolo5n, yolo6n, etc.
|
9 |
-
|
10 |
-
# Train the model
|
11 |
-
results = model.train(data=config_path, epochs=1)
|
12 |
-
|
13 |
-
# Define the save directory
|
14 |
-
save_dir = './runs/detect/train/weights'
|
15 |
-
|
16 |
-
# Create directory if it doesn't exist
|
17 |
-
if not os.path.exists(save_dir):
|
18 |
-
os.makedirs(save_dir)
|
19 |
-
|
20 |
-
# Save the model
|
21 |
-
model.save(os.path.join(save_dir, 'best.pt'))
|
22 |
-
|
23 |
-
# Print confirmation
|
24 |
-
print("Model saved to:", os.path.join(save_dir, 'best.pt'))
|
25 |
-
from ultralytics import YOLO
|
26 |
-
import gradio as gr
|
27 |
import cv2
|
28 |
-
import
|
29 |
-
import tempfile
|
30 |
-
|
31 |
-
# Load the trained YOLO model
|
32 |
-
model = YOLO("./runs/detect/train/weights/best.pt") # Path to your trained model
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
Returns the path to the output video.
|
38 |
-
"""
|
39 |
-
# Create a temporary file for the output video
|
40 |
-
output_path = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
|
41 |
-
|
42 |
-
# Open the input video
|
43 |
-
cap = cv2.VideoCapture(video_path)
|
44 |
-
if not cap.isOpened():
|
45 |
-
raise ValueError("Error opening video file")
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
50 |
-
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
51 |
-
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
if not ret:
|
61 |
-
break
|
62 |
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
65 |
|
66 |
-
|
67 |
-
|
|
|
68 |
|
69 |
-
|
70 |
-
|
|
|
71 |
|
72 |
-
#
|
73 |
-
|
74 |
-
out.release()
|
75 |
-
cv2.destroyAllWindows()
|
76 |
|
77 |
-
|
|
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
Gradio interface function to handle video input and return the processed video.
|
82 |
-
"""
|
83 |
-
if video is None:
|
84 |
-
return "Please upload a video file."
|
85 |
-
|
86 |
-
try:
|
87 |
-
# Process the video and get the output path
|
88 |
-
output_video_path = process_video(video)
|
89 |
-
|
90 |
-
# Return the output video for Gradio to display
|
91 |
-
return output_video_path
|
92 |
-
except Exception as e:
|
93 |
-
return f"Error processing video: {str(e)}"
|
94 |
|
95 |
-
#
|
96 |
-
|
97 |
-
|
98 |
-
inputs=gr.Video(label="Upload Video"),
|
99 |
-
outputs=gr.Video(label="Processed Video with Detections"),
|
100 |
-
title="YOLOv11 Object Detection on Video",
|
101 |
-
description="Upload a video to run object detection using a trained YOLOv11 model."
|
102 |
-
)
|
103 |
|
104 |
-
|
105 |
-
iface.launch()
|
|
|
1 |
+
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import cv2
|
3 |
+
import numpy as np
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
# Load your model (assuming it is a PyTorch model)
|
6 |
+
model = torch.load('.data/model.pt')
|
7 |
+
model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
# Open video file (input video)
|
10 |
+
input_video = cv2.VideoCapture('input_video.mp4')
|
|
|
|
|
|
|
11 |
|
12 |
+
# Get the frame width, height, and frames per second (fps) from the input video
|
13 |
+
frame_width = int(input_video.get(cv2.CAP_PROP_FRAME_WIDTH))
|
14 |
+
frame_height = int(input_video.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
15 |
+
fps = input_video.get(cv2.CAP_PROP_FPS)
|
16 |
|
17 |
+
# Define the output video writer
|
18 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # You can change this to any codec
|
19 |
+
output_video = cv2.VideoWriter('output_video.mp4', fourcc, fps, (frame_width, frame_height))
|
|
|
|
|
20 |
|
21 |
+
while True:
|
22 |
+
# Read a frame from the input video
|
23 |
+
ret, frame = input_video.read()
|
24 |
+
if not ret:
|
25 |
+
break # End of video
|
26 |
|
27 |
+
# Preprocess the frame if necessary (depends on your model)
|
28 |
+
# For example, convert to tensor and normalize if required
|
29 |
+
frame_tensor = torch.tensor(frame).float().unsqueeze(0) # Add batch dimension
|
30 |
|
31 |
+
# Pass the frame through the model
|
32 |
+
with torch.no_grad():
|
33 |
+
output = model(frame_tensor) # Adjust based on your model's requirements
|
34 |
|
35 |
+
# Postprocess the output if necessary (depends on your model's output format)
|
36 |
+
output_frame = output.squeeze(0).cpu().numpy() # Remove batch dimension and convert to NumPy
|
|
|
|
|
37 |
|
38 |
+
# Convert the model output to a valid image format (if necessary)
|
39 |
+
output_frame = np.uint8(output_frame)
|
40 |
|
41 |
+
# Write the frame to the output video
|
42 |
+
output_video.write(output_frame)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
# Release resources
|
45 |
+
input_video.release()
|
46 |
+
output_video.release()
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
cv2.destroyAllWindows()
|
|