Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -125,19 +125,33 @@ def process_video(video, resize_width=320, resize_height=240, frame_skip=5):
|
|
125 |
|
126 |
out_width, out_height = resize_width, resize_height
|
127 |
output_path = "processed_output.mp4"
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
cap.release()
|
134 |
-
return "processed_output.mp4", json.dumps({"error": "
|
135 |
|
136 |
processed_frames = 0
|
137 |
all_detections = []
|
138 |
frame_times = []
|
139 |
detection_frame_count = 0
|
140 |
output_frame_count = 0
|
|
|
141 |
|
142 |
while True:
|
143 |
ret, frame = cap.read()
|
@@ -159,9 +173,10 @@ def process_video(video, resize_width=320, resize_height=240, frame_skip=5):
|
|
159 |
conf = float(detection.conf)
|
160 |
box = detection.xyxy[0].cpu().numpy().astype(int).tolist()
|
161 |
label = model.names[cls]
|
162 |
-
|
163 |
-
|
164 |
-
|
|
|
165 |
|
166 |
if frame_detections:
|
167 |
detection_frame_count += 1
|
@@ -178,6 +193,7 @@ def process_video(video, resize_width=320, resize_height=240, frame_skip=5):
|
|
178 |
# Write frame and duplicates
|
179 |
out.write(annotated_frame)
|
180 |
output_frame_count += 1
|
|
|
181 |
if frame_skip > 1:
|
182 |
for _ in range(frame_skip - 1):
|
183 |
out.write(annotated_frame)
|
@@ -195,8 +211,9 @@ def process_video(video, resize_width=320, resize_height=240, frame_skip=5):
|
|
195 |
detection_summary = {
|
196 |
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
197 |
"frame": frame_count,
|
198 |
-
"
|
199 |
-
"
|
|
|
200 |
"gps": gps_coord,
|
201 |
"processing_time_ms": frame_time
|
202 |
}
|
@@ -204,9 +221,9 @@ def process_video(video, resize_width=320, resize_height=240, frame_skip=5):
|
|
204 |
if len(log_entries) > 50:
|
205 |
log_entries.pop(0)
|
206 |
|
207 |
-
# Pad remaining frames
|
208 |
-
while output_frame_count < total_frames and
|
209 |
-
out.write(
|
210 |
output_frame_count += 1
|
211 |
|
212 |
last_metrics = update_metrics(all_detections)
|
@@ -250,7 +267,7 @@ def process_video(video, resize_width=320, resize_height=240, frame_skip=5):
|
|
250 |
|
251 |
# Gradio interface
|
252 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="orange")) as iface:
|
253 |
-
gr.Markdown("#
|
254 |
with gr.Row():
|
255 |
with gr.Column(scale=3):
|
256 |
video_input = gr.Video(label="Upload Video")
|
|
|
125 |
|
126 |
out_width, out_height = resize_width, resize_height
|
127 |
output_path = "processed_output.mp4"
|
128 |
+
# Try codecs in order of preference
|
129 |
+
codecs = [('mp4v', '.mp4'), ('MJPG', '.avi'), ('XVID', '.avi')]
|
130 |
+
out = None
|
131 |
+
for codec, ext in codecs:
|
132 |
+
fourcc = cv2.VideoWriter_fourcc(*codec)
|
133 |
+
output_path = f"processed_output{ext}"
|
134 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (out_width, out_height))
|
135 |
+
if out.isOpened():
|
136 |
+
log_entries.append(f"Using codec: {codec}, output: {output_path}")
|
137 |
+
logging.info(f"Using codec: {codec}, output: {output_path}")
|
138 |
+
break
|
139 |
+
else:
|
140 |
+
log_entries.append(f"Failed to initialize codec: {codec}")
|
141 |
+
logging.warning(f"Failed to initialize codec: {codec}")
|
142 |
+
|
143 |
+
if not out or not out.isOpened():
|
144 |
+
log_entries.append("Error: All codecs failed to initialize video writer")
|
145 |
+
logging.error("All codecs failed to initialize video writer")
|
146 |
cap.release()
|
147 |
+
return "processed_output.mp4", json.dumps({"error": "All codecs failed"}, indent=2), "\n".join(log_entries), [], None, None
|
148 |
|
149 |
processed_frames = 0
|
150 |
all_detections = []
|
151 |
frame_times = []
|
152 |
detection_frame_count = 0
|
153 |
output_frame_count = 0
|
154 |
+
last_annotated_frame = None
|
155 |
|
156 |
while True:
|
157 |
ret, frame = cap.read()
|
|
|
173 |
conf = float(detection.conf)
|
174 |
box = detection.xyxy[0].cpu().numpy().astype(int).tolist()
|
175 |
label = model.names[cls]
|
176 |
+
if label != 'Crocodile': # Ignore irrelevant class
|
177 |
+
frame_detections.append({"label": label, "box": box, "conf": conf})
|
178 |
+
log_entries.append(f"Frame {frame_count}: Detected {label} with confidence {conf:.2f}")
|
179 |
+
logging.info(f"Frame {frame_count}: Detected {label} with confidence {conf:.2f}")
|
180 |
|
181 |
if frame_detections:
|
182 |
detection_frame_count += 1
|
|
|
193 |
# Write frame and duplicates
|
194 |
out.write(annotated_frame)
|
195 |
output_frame_count += 1
|
196 |
+
last_annotated_frame = annotated_frame
|
197 |
if frame_skip > 1:
|
198 |
for _ in range(frame_skip - 1):
|
199 |
out.write(annotated_frame)
|
|
|
211 |
detection_summary = {
|
212 |
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
213 |
"frame": frame_count,
|
214 |
+
"longitudinal": sum(1 for det in frame_detections if det["label"] == "Longitudinal"),
|
215 |
+
"pothole": sum(1 for det in frame_detections if det["label"] == "Pothole"),
|
216 |
+
"transverse": sum(1 for det in frame_detections if det["label"] == "Transverse"),
|
217 |
"gps": gps_coord,
|
218 |
"processing_time_ms": frame_time
|
219 |
}
|
|
|
221 |
if len(log_entries) > 50:
|
222 |
log_entries.pop(0)
|
223 |
|
224 |
+
# Pad remaining frames
|
225 |
+
while output_frame_count < total_frames and last_annotated_frame is not None:
|
226 |
+
out.write(last_annotated_frame)
|
227 |
output_frame_count += 1
|
228 |
|
229 |
last_metrics = update_metrics(all_detections)
|
|
|
267 |
|
268 |
# Gradio interface
|
269 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="orange")) as iface:
|
270 |
+
gr.Markdown("# Road Defect Detection Dashboard")
|
271 |
with gr.Row():
|
272 |
with gr.Column(scale=3):
|
273 |
video_input = gr.Video(label="Upload Video")
|