tarinmodel4 / app.py
nagasurendra's picture
Update app.py
efee8a7 verified
raw
history blame
1.84 kB
import cv2
import torch
import gradio as gr
from ultralytics import YOLO
# Load YOLOv8 model
model = YOLO('./data/model.pt') # Path to your model
# Define the function that processes the uploaded video
def process_video(video):
# video is now the file path string, not a file object
input_video = cv2.VideoCapture(video) # Directly pass the path to cv2.VideoCapture
# Get frame width, height, and fps from input video
frame_width = int(input_video.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(input_video.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = input_video.get(cv2.CAP_PROP_FPS)
# Define output video writer
output_video_path = "/mnt/data/output_video.mp4" # Path to save the output video
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
output_video = cv2.VideoWriter(output_video_path, fourcc, fps, (frame_width, frame_height))
while True:
# Read a frame from the video
ret, frame = input_video.read()
if not ret:
break # End of video
# Perform inference on the frame
results = model(frame)
# The results object contains annotations for the frame
annotated_frame = results[0].plot() # Plot the frame with bounding boxes
# Write the annotated frame to the output video
output_video.write(annotated_frame)
# Release resources
input_video.release()
output_video.release()
return output_video_path
# Create a Gradio interface for video upload
iface = gr.Interface(fn=process_video,
inputs=gr.Video(label="Upload Video"), # Updated line
outputs="file",
title="YOLOv8 Object Detection on Video",
description="Upload a video for object detection using YOLOv8")
# Launch the interface
iface.launch()