Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,12 +2,12 @@ import cv2
|
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
-
from ultralytics import YOLO, __version__ as ultralytics_version
|
6 |
|
7 |
# Debug: Check environment
|
8 |
print(f"Torch version: {torch.__version__}")
|
9 |
print(f"Gradio version: {gr.__version__}")
|
10 |
-
print(f"Ultralytics version: {ultralytics_version}")
|
11 |
print(f"CUDA available: {torch.cuda.is_available()}")
|
12 |
|
13 |
# Load YOLOv8 model
|
@@ -19,39 +19,50 @@ def process_video(video):
|
|
19 |
if video is None:
|
20 |
return "Error: No video uploaded"
|
21 |
|
|
|
22 |
cap = cv2.VideoCapture(video)
|
23 |
if not cap.isOpened():
|
24 |
return "Error: Could not open video file"
|
25 |
|
26 |
-
|
|
|
|
|
27 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
|
|
28 |
|
|
|
|
|
|
|
|
|
|
|
29 |
output_path = "processed_output.mp4"
|
30 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
31 |
out = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height))
|
32 |
|
33 |
-
frame_count =
|
34 |
-
frame_skip = 5 # Process every 5th frame
|
35 |
-
max_frames = 100 # Limit for testing
|
36 |
|
37 |
while True:
|
38 |
ret, frame = cap.read()
|
39 |
-
if not ret
|
40 |
break
|
41 |
|
42 |
frame_count += 1
|
43 |
-
|
44 |
-
continue
|
45 |
-
|
46 |
-
frame = cv2.resize(frame, (frame_width, frame_height))
|
47 |
-
print(f"Processing frame {frame_count}")
|
48 |
|
|
|
|
|
|
|
|
|
49 |
results = model(frame)
|
50 |
annotated_frame = results[0].plot()
|
|
|
|
|
51 |
out.write(annotated_frame)
|
52 |
|
|
|
53 |
cap.release()
|
54 |
out.release()
|
|
|
55 |
return output_path
|
56 |
|
57 |
# Gradio interface
|
|
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
+
from ultralytics import YOLO, __version__ as ultralytics_version
|
6 |
|
7 |
# Debug: Check environment
|
8 |
print(f"Torch version: {torch.__version__}")
|
9 |
print(f"Gradio version: {gr.__version__}")
|
10 |
+
print(f"Ultralytics version: {ultralytics_version}")
|
11 |
print(f"CUDA available: {torch.cuda.is_available()}")
|
12 |
|
13 |
# Load YOLOv8 model
|
|
|
19 |
if video is None:
|
20 |
return "Error: No video uploaded"
|
21 |
|
22 |
+
# Open the input video
|
23 |
cap = cv2.VideoCapture(video)
|
24 |
if not cap.isOpened():
|
25 |
return "Error: Could not open video file"
|
26 |
|
27 |
+
# Get input video properties
|
28 |
+
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
29 |
+
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
30 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
31 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
32 |
|
33 |
+
# Use original resolution to avoid resizing issues (optional: keep 320x240 if needed)
|
34 |
+
# frame_width, frame_height = 320, 240
|
35 |
+
print(f"Input video: {frame_width}x{frame_height}, {fps} FPS, {total_frames} frames")
|
36 |
+
|
37 |
+
# Set up video writer
|
38 |
output_path = "processed_output.mp4"
|
39 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
40 |
out = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height))
|
41 |
|
42 |
+
frame_count = 0
|
|
|
|
|
43 |
|
44 |
while True:
|
45 |
ret, frame = cap.read()
|
46 |
+
if not ret:
|
47 |
break
|
48 |
|
49 |
frame_count += 1
|
50 |
+
print(f"Processing frame {frame_count}/{total_frames}")
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
# Optional: Resize if needed (remove if using original resolution)
|
53 |
+
# frame = cv2.resize(frame, (frame_width, frame_height))
|
54 |
+
|
55 |
+
# Run YOLOv8 inference
|
56 |
results = model(frame)
|
57 |
annotated_frame = results[0].plot()
|
58 |
+
|
59 |
+
# Write the annotated frame to the output video
|
60 |
out.write(annotated_frame)
|
61 |
|
62 |
+
# Release resources
|
63 |
cap.release()
|
64 |
out.release()
|
65 |
+
print(f"Output video saved as {output_path}")
|
66 |
return output_path
|
67 |
|
68 |
# Gradio interface
|