Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -13,7 +13,7 @@ from ultralytics import YOLO
|
|
13 |
import ultralytics
|
14 |
import time
|
15 |
|
16 |
-
# Set YOLO config directory
|
17 |
os.environ["YOLO_CONFIG_DIR"] = "/tmp/Ultralytics"
|
18 |
|
19 |
# Set up logging
|
@@ -38,11 +38,12 @@ detected_issues: List[str] = []
|
|
38 |
gps_coordinates: List[List[float]] = []
|
39 |
last_metrics: Dict[str, Any] = {}
|
40 |
frame_count: int = 0
|
|
|
41 |
|
42 |
# Debug: Check environment
|
43 |
print(f"Torch version: {torch.__version__}")
|
44 |
print(f"Gradio version: {gr.__version__}")
|
45 |
-
print(f"Ultralytics version: {ultralytics.__version__}")
|
46 |
print(f"CUDA available: {torch.cuda.is_available()}")
|
47 |
|
48 |
# Load custom YOLO model
|
@@ -58,7 +59,7 @@ def generate_map(gps_coords: List[List[float]], items: List[Dict[str, Any]]) ->
|
|
58 |
map_path = "map_temp.png"
|
59 |
plt.figure(figsize=(4, 4))
|
60 |
plt.scatter([x[1] for x in gps_coords], [x[0] for x in gps_coords], c='blue', label='GPS Points')
|
61 |
-
plt.title("
|
62 |
plt.xlabel("Longitude")
|
63 |
plt.ylabel("Latitude")
|
64 |
plt.legend()
|
@@ -67,7 +68,7 @@ def generate_map(gps_coords: List[List[float]], items: List[Dict[str, Any]]) ->
|
|
67 |
return map_path
|
68 |
|
69 |
def send_to_salesforce(data: Dict[str, Any]) -> None:
|
70 |
-
|
71 |
|
72 |
def update_metrics(detections: List[Dict[str, Any]]) -> Dict[str, Any]:
|
73 |
counts = Counter([det["label"] for det in detections])
|
@@ -129,6 +130,8 @@ def process_video(video, resize_width=320, resize_height=240, frame_skip=5):
|
|
129 |
|
130 |
processed_frames = 0
|
131 |
all_detections = []
|
|
|
|
|
132 |
|
133 |
while True:
|
134 |
ret, frame = cap.read()
|
@@ -138,10 +141,10 @@ def process_video(video, resize_width=320, resize_height=240, frame_skip=5):
|
|
138 |
if frame_count % frame_skip != 0:
|
139 |
continue
|
140 |
processed_frames += 1
|
141 |
-
|
142 |
|
143 |
frame = cv2.resize(frame, (out_width, out_height))
|
144 |
-
results = model(frame, verbose=False, conf=0.5, iou=0.7)
|
145 |
annotated_frame = results[0].plot()
|
146 |
|
147 |
frame_detections = []
|
@@ -155,20 +158,16 @@ def process_video(video, resize_width=320, resize_height=240, frame_skip=5):
|
|
155 |
logging.info(f"Frame {frame_count}: Detected {label} with confidence {conf:.2f}")
|
156 |
|
157 |
if frame_detections:
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
gps_coordinates.append(gps_coord)
|
169 |
-
for det in frame_detections:
|
170 |
-
det["gps"] = gps_coord
|
171 |
-
all_detections.extend(frame_detections)
|
172 |
|
173 |
out.write(annotated_frame)
|
174 |
if frame_skip > 1:
|
@@ -178,27 +177,34 @@ def process_video(video, resize_width=320, resize_height=240, frame_skip=5):
|
|
178 |
frame_count += 1
|
179 |
|
180 |
detected_counts.append(len(frame_detections))
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
detection_summary = {
|
183 |
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
184 |
"frame": frame_count,
|
185 |
"cracks": sum(1 for det in frame_detections if det["label"] == "crack"),
|
186 |
"potholes": sum(1 for det in frame_detections if det["label"] == "pothole"),
|
187 |
"gps": gps_coord,
|
188 |
-
"processing_time_ms":
|
189 |
}
|
190 |
log_entries.append(json.dumps(detection_summary, indent=2))
|
191 |
-
|
192 |
-
if len(log_entries) > 100:
|
193 |
log_entries.pop(0)
|
194 |
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
|
|
202 |
|
203 |
cap.release()
|
204 |
out.release()
|
@@ -209,10 +215,14 @@ def process_video(video, resize_width=320, resize_height=240, frame_skip=5):
|
|
209 |
output_duration = output_frames / output_fps
|
210 |
cap.release()
|
211 |
|
|
|
|
|
212 |
log_entries.append(f"Output video: {output_frames} frames, {output_fps} FPS, {output_duration:.2f} seconds")
|
|
|
213 |
logging.info(f"Output video: {output_frames} frames, {output_fps} FPS, {output_duration:.2f} seconds")
|
|
|
214 |
print(f"Output video: {output_frames} frames, {output_fps} FPS, {output_duration:.2f} seconds")
|
215 |
-
print(f"
|
216 |
|
217 |
chart_path = generate_line_chart()
|
218 |
map_path = generate_map(gps_coordinates[-5:], all_detections)
|
@@ -232,20 +242,20 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="orange")) as iface:
|
|
232 |
with gr.Row():
|
233 |
with gr.Column(scale=3):
|
234 |
video_input = gr.Video(label="Upload Video")
|
235 |
-
width_slider = gr.Slider(320,
|
236 |
-
height_slider = gr.Slider(240,
|
237 |
skip_slider = gr.Slider(1, 10, value=5, label="Frame Skip", step=1)
|
238 |
process_btn = gr.Button("Process Video", variant="primary")
|
239 |
with gr.Column(scale=1):
|
240 |
-
metrics_output = gr.Textbox(label="Detection Metrics", lines=
|
241 |
with gr.Row():
|
242 |
video_output = gr.Video(label="Processed Video")
|
243 |
-
issue_gallery = gr.Gallery(label="Detected Issues", columns=4, height="auto")
|
244 |
with gr.Row():
|
245 |
chart_output = gr.Image(label="Detection Trend")
|
246 |
map_output = gr.Image(label="Issue Locations Map")
|
247 |
with gr.Row():
|
248 |
-
logs_output = gr.Textbox(label="Logs", lines=
|
249 |
|
250 |
process_btn.click(
|
251 |
process_video,
|
|
|
13 |
import ultralytics
|
14 |
import time
|
15 |
|
16 |
+
# Set YOLO config directory
|
17 |
os.environ["YOLO_CONFIG_DIR"] = "/tmp/Ultralytics"
|
18 |
|
19 |
# Set up logging
|
|
|
38 |
gps_coordinates: List[List[float]] = []
|
39 |
last_metrics: Dict[str, Any] = {}
|
40 |
frame_count: int = 0
|
41 |
+
SAVE_IMAGE_INTERVAL = 1 # Save every frame with detections
|
42 |
|
43 |
# Debug: Check environment
|
44 |
print(f"Torch version: {torch.__version__}")
|
45 |
print(f"Gradio version: {gr.__version__}")
|
46 |
+
print(f"Ultralytics version: {ultralytics.__version__}")
|
47 |
print(f"CUDA available: {torch.cuda.is_available()}")
|
48 |
|
49 |
# Load custom YOLO model
|
|
|
59 |
map_path = "map_temp.png"
|
60 |
plt.figure(figsize=(4, 4))
|
61 |
plt.scatter([x[1] for x in gps_coords], [x[0] for x in gps_coords], c='blue', label='GPS Points')
|
62 |
+
plt.title("Issue Locations Map")
|
63 |
plt.xlabel("Longitude")
|
64 |
plt.ylabel("Latitude")
|
65 |
plt.legend()
|
|
|
68 |
return map_path
|
69 |
|
70 |
def send_to_salesforce(data: Dict[str, Any]) -> None:
|
71 |
+
pass # Minimal mock
|
72 |
|
73 |
def update_metrics(detections: List[Dict[str, Any]]) -> Dict[str, Any]:
|
74 |
counts = Counter([det["label"] for det in detections])
|
|
|
130 |
|
131 |
processed_frames = 0
|
132 |
all_detections = []
|
133 |
+
frame_times = []
|
134 |
+
detection_frame_count = 0
|
135 |
|
136 |
while True:
|
137 |
ret, frame = cap.read()
|
|
|
141 |
if frame_count % frame_skip != 0:
|
142 |
continue
|
143 |
processed_frames += 1
|
144 |
+
frame_start = time.time()
|
145 |
|
146 |
frame = cv2.resize(frame, (out_width, out_height))
|
147 |
+
results = model(frame, verbose=False, conf=0.5, iou=0.7) # Lower thresholds
|
148 |
annotated_frame = results[0].plot()
|
149 |
|
150 |
frame_detections = []
|
|
|
158 |
logging.info(f"Frame {frame_count}: Detected {label} with confidence {conf:.2f}")
|
159 |
|
160 |
if frame_detections:
|
161 |
+
detection_frame_count += 1
|
162 |
+
if detection_frame_count % SAVE_IMAGE_INTERVAL == 0:
|
163 |
+
captured_frame_path = os.path.join(CAPTURED_FRAMES_DIR, f"detected_{frame_count}.jpg")
|
164 |
+
if not cv2.imwrite(captured_frame_path, annotated_frame):
|
165 |
+
log_entries.append(f"Error: Failed to save {captured_frame_path}")
|
166 |
+
logging.error(f"Failed to save {captured_frame_path}")
|
167 |
+
else:
|
168 |
+
detected_issues.append(captured_frame_path)
|
169 |
+
if len(detected_issues) > 100:
|
170 |
+
detected_issues.pop(0)
|
|
|
|
|
|
|
|
|
171 |
|
172 |
out.write(annotated_frame)
|
173 |
if frame_skip > 1:
|
|
|
177 |
frame_count += 1
|
178 |
|
179 |
detected_counts.append(len(frame_detections))
|
180 |
+
gps_coord = [17.385044 + (frame_count * 0.0001), 78.486671 + (frame_count * 0.0001)]
|
181 |
+
gps_coordinates.append(gps_coord)
|
182 |
+
for det in frame_detections:
|
183 |
+
det["gps"] = gps_coord
|
184 |
+
all_detections.extend(frame_detections)
|
185 |
+
|
186 |
+
frame_time = (time.time() - frame_start) * 1000
|
187 |
+
frame_times.append(frame_time)
|
188 |
detection_summary = {
|
189 |
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
190 |
"frame": frame_count,
|
191 |
"cracks": sum(1 for det in frame_detections if det["label"] == "crack"),
|
192 |
"potholes": sum(1 for det in frame_detections if det["label"] == "pothole"),
|
193 |
"gps": gps_coord,
|
194 |
+
"processing_time_ms": frame_time
|
195 |
}
|
196 |
log_entries.append(json.dumps(detection_summary, indent=2))
|
197 |
+
if len(log_entries) > 50:
|
|
|
198 |
log_entries.pop(0)
|
199 |
|
200 |
+
last_metrics = update_metrics(all_detections)
|
201 |
+
send_to_salesforce({
|
202 |
+
"detections": all_detections,
|
203 |
+
"metrics": last_metrics,
|
204 |
+
"timestamp": detection_summary["timestamp"] if all_detections else datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
205 |
+
"frame_count": frame_count,
|
206 |
+
"gps_coordinates": gps_coordinates[-1] if gps_coordinates else [0, 0]
|
207 |
+
})
|
208 |
|
209 |
cap.release()
|
210 |
out.release()
|
|
|
215 |
output_duration = output_frames / output_fps
|
216 |
cap.release()
|
217 |
|
218 |
+
total_time = time.time() - start_time
|
219 |
+
avg_frame_time = sum(frame_times) / len(frame_times) if frame_times else 0
|
220 |
log_entries.append(f"Output video: {output_frames} frames, {output_fps} FPS, {output_duration:.2f} seconds")
|
221 |
+
log_entries.append(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms, Detection frames: {detection_frame_count}")
|
222 |
logging.info(f"Output video: {output_frames} frames, {output_fps} FPS, {output_duration:.2f} seconds")
|
223 |
+
logging.info(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms, Detection frames: {detection_frame_count}")
|
224 |
print(f"Output video: {output_frames} frames, {output_fps} FPS, {output_duration:.2f} seconds")
|
225 |
+
print(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms, Detection frames: {detection_frame_count}")
|
226 |
|
227 |
chart_path = generate_line_chart()
|
228 |
map_path = generate_map(gps_coordinates[-5:], all_detections)
|
|
|
242 |
with gr.Row():
|
243 |
with gr.Column(scale=3):
|
244 |
video_input = gr.Video(label="Upload Video")
|
245 |
+
width_slider = gr.Slider(320, 640, value=320, label="Output Width", step=1)
|
246 |
+
height_slider = gr.Slider(240, 480, value=240, label="Output Height", step=1)
|
247 |
skip_slider = gr.Slider(1, 10, value=5, label="Frame Skip", step=1)
|
248 |
process_btn = gr.Button("Process Video", variant="primary")
|
249 |
with gr.Column(scale=1):
|
250 |
+
metrics_output = gr.Textbox(label="Detection Metrics", lines=5, interactive=False)
|
251 |
with gr.Row():
|
252 |
video_output = gr.Video(label="Processed Video")
|
253 |
+
issue_gallery = gr.Gallery(label="Detected Issues", columns=4, height="auto", object_fit="contain")
|
254 |
with gr.Row():
|
255 |
chart_output = gr.Image(label="Detection Trend")
|
256 |
map_output = gr.Image(label="Issue Locations Map")
|
257 |
with gr.Row():
|
258 |
+
logs_output = gr.Textbox(label="Logs", lines=5, interactive=False)
|
259 |
|
260 |
process_btn.click(
|
261 |
process_video,
|