Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,8 +4,10 @@ import gradio as gr
|
|
4 |
import numpy as np
|
5 |
from ultralytics import YOLO
|
6 |
|
7 |
-
# Load YOLOv8 model
|
|
|
8 |
model = YOLO('./data/best.pt') # Path to your model
|
|
|
9 |
|
10 |
# Define the function that processes the uploaded video
|
11 |
def process_video(video):
|
@@ -17,19 +19,33 @@ def process_video(video):
|
|
17 |
frame_height = int(input_video.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
18 |
fps = input_video.get(cv2.CAP_PROP_FPS)
|
19 |
|
|
|
|
|
|
|
|
|
20 |
# Create a VideoWriter object to write processed frames to an output file
|
21 |
output_video_path = "processed_output.mp4"
|
22 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Codec for .mp4 format
|
23 |
output_video = cv2.VideoWriter(output_video_path, fourcc, fps, (frame_width, frame_height))
|
24 |
|
|
|
|
|
|
|
25 |
while True:
|
26 |
# Read a frame from the video
|
27 |
ret, frame = input_video.read()
|
28 |
if not ret:
|
29 |
break # End of video
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
# Perform inference on the frame
|
32 |
-
results = model(frame)
|
33 |
|
34 |
# The results object contains annotations for the frame
|
35 |
annotated_frame = results[0].plot() # Plot the frame with bounding boxes
|
|
|
4 |
import numpy as np
|
5 |
from ultralytics import YOLO
|
6 |
|
7 |
+
# Load YOLOv8 model and set device (GPU if available)
|
8 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
model = YOLO('./data/best.pt') # Path to your model
|
10 |
+
model.to(device)
|
11 |
|
12 |
# Define the function that processes the uploaded video
|
13 |
def process_video(video):
|
|
|
19 |
frame_height = int(input_video.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
20 |
fps = input_video.get(cv2.CAP_PROP_FPS)
|
21 |
|
22 |
+
# Resize to reduce computation (optional)
|
23 |
+
new_width, new_height = 640, 480 # Resize to 640x480 resolution
|
24 |
+
frame_width, frame_height = new_width, new_height
|
25 |
+
|
26 |
# Create a VideoWriter object to write processed frames to an output file
|
27 |
output_video_path = "processed_output.mp4"
|
28 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Codec for .mp4 format
|
29 |
output_video = cv2.VideoWriter(output_video_path, fourcc, fps, (frame_width, frame_height))
|
30 |
|
31 |
+
frame_skip = 10 # Skip 10 frames between each processed frame
|
32 |
+
frame_count = 0
|
33 |
+
|
34 |
while True:
|
35 |
# Read a frame from the video
|
36 |
ret, frame = input_video.read()
|
37 |
if not ret:
|
38 |
break # End of video
|
39 |
|
40 |
+
frame_count += 1
|
41 |
+
if frame_count % frame_skip != 0:
|
42 |
+
continue # Skip frames
|
43 |
+
|
44 |
+
# Resize the frame to reduce computational load
|
45 |
+
frame = cv2.resize(frame, (new_width, new_height))
|
46 |
+
|
47 |
# Perform inference on the frame
|
48 |
+
results = model(frame) # Automatically uses GPU if available
|
49 |
|
50 |
# The results object contains annotations for the frame
|
51 |
annotated_frame = results[0].plot() # Plot the frame with bounding boxes
|