trainmodel1 / app.py
nagasurendra's picture
Update app.py
cb86f50 verified
import gradio as gr
import torch
import cv2
from ultralytics import YOLO
# Load YOLO models
def safe_load_yolo_model(path):
torch.serialization.add_safe_globals([torch, 'ultralytics.nn.tasks.DetectionModel'])
return YOLO(path)
# Load the models
model_yolo11 = safe_load_yolo_model('./data/yolo11n.pt')
model_best = safe_load_yolo_model('./data/best2.pt')
def process_video(video):
# Open the video using OpenCV
cap = cv2.VideoCapture(video)
fps = cap.get(cv2.CAP_PROP_FPS)
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# Create VideoWriter to save output video
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Codec for .mp4
out = cv2.VideoWriter('output_video.mp4', fourcc, fps, (frame_width, frame_height))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Detect with YOLOv11 (general object detection model)
results_yolo11 = model_yolo11(frame)
# Detect with best.pt (specialized model for cracks and potholes)
results_best = model_best(frame)
# Draw bounding boxes and labels for YOLOv11 (General Object Detection)
for result in results_yolo11:
boxes = result.boxes
for box in boxes:
x1, y1, x2, y2 = map(int, box.xyxy[0].tolist())
class_id = int(box.cls[0]) # Class index for YOLO
# Use model's built-in class names
label = f"{model_yolo11.names[class_id]} - {box.conf[0]:.2f}"
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
# Draw bounding boxes and labels for best.pt (Crack and Pothole detection)
for result in results_best:
boxes = result.boxes
for box in boxes:
x1, y1, x2, y2 = map(int, box.xyxy[0].tolist())
class_id = int(box.cls[0]) # Class index for best.pt
# Use model's built-in class names for best.pt
label = f"{model_best.names[class_id]} - {box.conf[0]:.2f}"
cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), 2)
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 0, 0), 2)
# Write the processed frame to the output video
out.write(frame)
cap.release()
out.release()
return 'output_video.mp4'
# Gradio interface
iface = gr.Interface(fn=process_video, inputs=gr.Video(), outputs=gr.Video(), live=True)
# Launch the app
iface.launch()