Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import cv2 | |
from ultralytics import YOLO | |
# Load YOLO models | |
def safe_load_yolo_model(path): | |
torch.serialization.add_safe_globals([torch, 'ultralytics.nn.tasks.DetectionModel']) | |
return YOLO(path) | |
# Load the models | |
model_yolo11 = safe_load_yolo_model('./data/yolo11n.pt') | |
model_best = safe_load_yolo_model('./data/best2.pt') | |
def process_video(video): | |
# Open the video using OpenCV | |
cap = cv2.VideoCapture(video) | |
fps = cap.get(cv2.CAP_PROP_FPS) | |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
# Create VideoWriter to save output video | |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Codec for .mp4 | |
out = cv2.VideoWriter('output_video.mp4', fourcc, fps, (frame_width, frame_height)) | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
break | |
# Detect with YOLOv11 (general object detection model) | |
results_yolo11 = model_yolo11(frame) | |
# Detect with best.pt (specialized model for cracks and potholes) | |
results_best = model_best(frame) | |
# Draw bounding boxes and labels for YOLOv11 (General Object Detection) | |
for result in results_yolo11: | |
boxes = result.boxes | |
for box in boxes: | |
x1, y1, x2, y2 = map(int, box.xyxy[0].tolist()) | |
class_id = int(box.cls[0]) # Class index for YOLO | |
# Use model's built-in class names | |
label = f"{model_yolo11.names[class_id]} - {box.conf[0]:.2f}" | |
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2) | |
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2) | |
# Draw bounding boxes and labels for best.pt (Crack and Pothole detection) | |
for result in results_best: | |
boxes = result.boxes | |
for box in boxes: | |
x1, y1, x2, y2 = map(int, box.xyxy[0].tolist()) | |
class_id = int(box.cls[0]) # Class index for best.pt | |
# Use model's built-in class names for best.pt | |
label = f"{model_best.names[class_id]} - {box.conf[0]:.2f}" | |
cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), 2) | |
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 0, 0), 2) | |
# Write the processed frame to the output video | |
out.write(frame) | |
cap.release() | |
out.release() | |
return 'output_video.mp4' | |
# Gradio interface | |
iface = gr.Interface(fn=process_video, inputs=gr.Video(), outputs=gr.Video(), live=True) | |
# Launch the app | |
iface.launch() | |