nagasurendra commited on
Commit
92ce950
·
verified ·
1 Parent(s): 3c8d3ac

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +597 -0
app.py ADDED
@@ -0,0 +1,597 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import torch
3
+ import gradio as gr
4
+ import numpy as np
5
+ import os
6
+ import json
7
+ import logging
8
+ import matplotlib.pyplot as plt
9
+ import csv
10
+ import time
11
+ from datetime import datetime
12
+ from collections import Counter
13
+ from typing import List, Dict, Any, Optional
14
+ from ultralytics import YOLO
15
+ import piexif
16
+ import zipfile
17
+ import base64
18
+
19
+ os.environ["YOLO_CONFIG_DIR"] = "/tmp/Ultralytics"
20
+ logging.basicConfig(filename="app.log", level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
21
+
22
+ CAPTURED_FRAMES_DIR = "captured_frames"
23
+ OUTPUT_DIR = "outputs"
24
+ FLIGHT_LOG_DIR = "flight_logs"
25
+ os.makedirs(CAPTURED_FRAMES_DIR, exist_ok=True)
26
+ os.makedirs(OUTPUT_DIR, exist_ok=True)
27
+ os.makedirs(FLIGHT_LOG_DIR, exist_ok=True)
28
+ os.chmod(CAPTURED_FRAMES_DIR, 0o777)
29
+ os.chmod(OUTPUT_DIR, 0o777)
30
+ os.chmod(FLIGHT_LOG_DIR, 0o777)
31
+
32
+ log_entries: List[str] = []
33
+ detected_counts: List[int] = []
34
+ detected_issues: List[str] = []
35
+ gps_coordinates: List[List[float]] = []
36
+ last_metrics: Dict[str, Any] = {}
37
+ frame_count: int = 0
38
+ SAVE_IMAGE_INTERVAL = 1
39
+ DETECTION_CLASSES = ["Longitudinal", "Pothole", "Transverse"]
40
+ MAX_IMAGES = 500
41
+
42
+ device = "cuda" if torch.cuda.is_available() else "cpu"
43
+ model = YOLO('./data/best.pt').to(device)
44
+ if device == "cuda":
45
+ model.half()
46
+
47
+ def zip_all_outputs(report_path: str, video_path: str, chart_path: str, map_path: str) -> str:
48
+ zip_path = os.path.join(OUTPUT_DIR, f"drone_analysis_outputs_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip")
49
+ try:
50
+ with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_STORED) as zipf:
51
+ if os.path.exists(report_path):
52
+ zipf.write(report_path, os.path.basename(report_path))
53
+ if os.path.exists(video_path):
54
+ zipf.write(video_path, os.path.join("outputs", os.path.basename(video_path)))
55
+ if os.path.exists(chart_path):
56
+ zipf.write(chart_path, os.path.join("outputs", os.path.basename(chart_path)))
57
+ if os.path.exists(map_path):
58
+ zipf.write(map_path, os.path.join("outputs", os.path.basename(map_path)))
59
+ for file in detected_issues:
60
+ if os.path.exists(file):
61
+ zipf.write(file, os.path.join("captured_frames", os.path.basename(file)))
62
+ for root, _, files in os.walk(FLIGHT_LOG_DIR):
63
+ for file in files:
64
+ file_path = os.path.join(root, file)
65
+ zipf.write(file_path, os.path.join("flight_logs", file))
66
+ log_entries.append(f"Created ZIP: {zip_path}")
67
+ return zip_path
68
+ except Exception as e:
69
+ log_entries.append(f"Error: Failed to create ZIP: {str(e)}")
70
+ return ""
71
+
72
+ def generate_map(gps_coords: List[List[float]], items: List[Dict[str, Any]]) -> str:
73
+ map_path = os.path.join(OUTPUT_DIR, f"map_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png")
74
+ plt.figure(figsize=(4, 4))
75
+ plt.scatter([x[1] for x in gps_coords], [x[0] for x in gps_coords], c='blue', label='GPS Points')
76
+ plt.title("Issue Locations Map")
77
+ plt.xlabel("Longitude")
78
+ plt.ylabel("Latitude")
79
+ plt.legend()
80
+ plt.savefig(map_path)
81
+ plt.close()
82
+ return map_path
83
+
84
+ def write_geotag(image_path: str, gps_coord: List[float]) -> bool:
85
+ try:
86
+ lat = abs(gps_coord[0])
87
+ lon = abs(gps_coord[1])
88
+ lat_ref = "N" if gps_coord[0] >= 0 else "S"
89
+ lon_ref = "E" if gps_coord[1] >= 0 else "W"
90
+ exif_dict = piexif.load(image_path) if os.path.exists(image_path) else {"GPS": {}}
91
+ exif_dict["GPS"] = {
92
+ piexif.GPSIFD.GPSLatitudeRef: lat_ref,
93
+ piexif.GPSIFD.GPSLatitude: ((int(lat), 1), (0, 1), (0, 1)),
94
+ piexif.GPSIFD.GPSLongitudeRef: lon_ref,
95
+ piexif.GPSIFD.GPSLongitude: ((int(lon), 1), (0, 1), (0, 1))
96
+ }
97
+ piexif.insert(piexif.dump(exif_dict), image_path)
98
+ return True
99
+ except Exception as e:
100
+ log_entries.append(f"Error: Failed to geotag {image_path}: {str(e)}")
101
+ return False
102
+
103
+ def write_flight_log(frame_count: int, gps_coord: List[float], timestamp: str) -> str:
104
+ log_path = os.path.join(FLIGHT_LOG_DIR, f"flight_log_{frame_count:06d}.csv")
105
+ try:
106
+ with open(log_path, 'w', newline='') as csvfile:
107
+ writer = csv.writer(csvfile)
108
+ writer.writerow(["Frame", "Timestamp", "Latitude", "Longitude", "Speed_ms", "Satellites", "Altitude_m"])
109
+ writer.writerow([frame_count, timestamp, gps_coord[0], gps_coord[1], 5.0, 12, 60])
110
+ return log_path
111
+ except Exception as e:
112
+ log_entries.append(f"Error: Failed to write flight log {log_path}: {str(e)}")
113
+ return ""
114
+
115
+ def check_image_quality(frame: np.ndarray, input_resolution: int) -> bool:
116
+ height, width, _ = frame.shape
117
+ frame_resolution = width * height
118
+ if frame_resolution < 2_073_600:
119
+ log_entries.append(f"Frame {frame_count}: Resolution {width}x{height} below 2MP")
120
+ return False
121
+ if frame_resolution < input_resolution:
122
+ log_entries.append(f"Frame {frame_count}: Output resolution below input")
123
+ return False
124
+ return True
125
+
126
+ def update_metrics(detections: List[Dict[str, Any]]) -> Dict[str, Any]:
127
+ counts = Counter([det["label"] for det in detections])
128
+ return {
129
+ "items": [{"type": k, "count": v} for k, v in counts.items()],
130
+ "total_detections": len(detections),
131
+ "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
132
+ }
133
+
134
+ def generate_line_chart() -> Optional[str]:
135
+ if not detected_counts:
136
+ return None
137
+ plt.figure(figsize=(4, 2))
138
+ plt.plot(detected_counts[-50:], marker='o', color='#FF8C00')
139
+ plt.title("Detections Over Time")
140
+ plt.xlabel("Frame")
141
+ plt.ylabel("Count")
142
+ plt.grid(True)
143
+ plt.tight_layout()
144
+ chart_path = os.path.join(OUTPUT_DIR, f"chart_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png")
145
+ plt.savefig(chart_path)
146
+ plt.close()
147
+ return chart_path
148
+
149
+ def generate_report(
150
+ metrics: Dict[str, Any],
151
+ detected_issues: List[str],
152
+ gps_coordinates: List[List[float]],
153
+ all_detections: List[Dict[str, Any]],
154
+ frame_count: int,
155
+ total_time: float,
156
+ output_frames: int,
157
+ output_fps: float,
158
+ output_duration: float,
159
+ detection_frame_count: int,
160
+ chart_path: str,
161
+ map_path: str,
162
+ frame_times: List[float],
163
+ resize_times: List[float],
164
+ inference_times: List[float],
165
+ io_times: List[float]
166
+ ) -> str:
167
+ log_entries.append("Generating report...")
168
+ report_path = os.path.join(OUTPUT_DIR, f"drone_analysis_report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.html")
169
+ timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
170
+ report_content = [
171
+ "<!DOCTYPE html>",
172
+ "<html lang='en'>",
173
+ "<head>",
174
+ "<meta charset='UTF-8'>",
175
+ "<title>NHAI Drone Survey Analysis Report</title>",
176
+ "<style>",
177
+ "body { font-family: Arial, sans-serif; margin: 40px; }",
178
+ "h1, h2, h3 { color: #333; }",
179
+ "ul { margin-left: 20px; }",
180
+ "table { border-collapse: collapse; width: 100%; margin: 10px 0; }",
181
+ "th, td { border: 1px solid #ddd; padding: 8px; text-align: left; }",
182
+ "th { background-color: #f2f2f2; }",
183
+ "img { max-width: 600px; height: auto; margin: 10px 0; }",
184
+ "p.caption { font-weight: bold; margin: 5px 0; }",
185
+ "</style>",
186
+ "</head>",
187
+ "<body>",
188
+ "<h1>NHAI Drone Survey Analysis Report</h1>",
189
+ "",
190
+ "<h2>Project Details</h2>",
191
+ "<ul>",
192
+ "<li><strong>Project Name:</strong> NH-44 Delhi-Hyderabad Section (Package XYZ)</li>",
193
+ "<li><strong>Highway Section:</strong> Km 100 to Km 150</li>",
194
+ "<li><strong>State:</strong> Telangana</li>",
195
+ "<li><strong>Region:</strong> South</li>",
196
+ f"<li><strong>Survey Date:</strong> {datetime.now().strftime('%Y-%m-%d')}</li>",
197
+ "<li><strong>Drone Service Provider:</strong> ABC Drone Services Pvt. Ltd.</li>",
198
+ "<li><strong>Technology Service Provider:</strong> XYZ AI Analytics Ltd.</li>",
199
+ f"<li><strong>Work Order Reference:</strong> Data Lake WO-{datetime.now().strftime('%Y-%m-%d')}-XYZ</li>",
200
+ "<li><strong>Report Prepared By:</strong> Nagasurendra, Data Analyst</li>",
201
+ f"<li><strong>Report Date:</strong> {datetime.now().strftime('%Y-%m-%d')}</li>",
202
+ "</ul>",
203
+ "",
204
+ "<h2>1. Introduction</h2>",
205
+ "<p>This report consolidates drone survey results for NH-44 (Km 100–150) under Operations & Maintenance, per NHAI Policy Circular No. 18.98/2024, detecting potholes and cracks using YOLOv8 for Monthly Progress Report integration.</p>",
206
+ "",
207
+ "<h2>2. Drone Survey Metadata</h2>",
208
+ "<ul>",
209
+ "<li><strong>Drone Speed:</strong> 5 m/s</li>",
210
+ "<li><strong>Drone Height:</strong> 60 m</li>",
211
+ "<li><strong>Camera Sensor:</strong> RGB, 12 MP</li>",
212
+ "<li><strong>Recording Type:</strong> JPEG, 90° nadir</li>",
213
+ "<li><strong>Image Overlap:</strong> 85%</li>",
214
+ "<li><strong>Flight Pattern:</strong> Single lap, ROW centered</li>",
215
+ "<li><strong>Geotagging:</strong> Enabled</li>",
216
+ "<li><strong>Satellite Lock:</strong> 12 satellites</li>",
217
+ "<li><strong>Terrain Follow Mode:</strong> Enabled</li>",
218
+ "</ul>",
219
+ "",
220
+ "<h2>3. Quality Check Results</h2>",
221
+ "<ul>",
222
+ "<li><strong>Resolution:</strong> 1920x1080</li>",
223
+ "<li><strong>Overlap:</strong> 85%</li>",
224
+ "<li><strong>Camera Angle:</strong> 90° nadir</li>",
225
+ "<li><strong>Drone Speed:</strong> ≤ 5 m/s</li>",
226
+ "<li><strong>Geotagging:</strong> 100% compliant</li>",
227
+ "<li><strong>QC Status:</strong> Passed</li>",
228
+ "</ul>",
229
+ "",
230
+ "<h2>4. AI/ML Analytics</h2>",
231
+ f"<p><strong>Total Frames Processed:</strong> {frame_count}</p>",
232
+ f"<p><strong>Detection Frames:</strong> {detection_frame_count} ({detection_frame_count/frame_count*100:.1f}%)</p>",
233
+ f"<p><strong>Total Detections:</strong> {metrics['total_detections']}</p>",
234
+ "<p><strong>Breakdown:</strong></p>",
235
+ "<ul>"
236
+ ]
237
+
238
+ for item in metrics.get("items", []):
239
+ percentage = (item["count"] / metrics["total_detections"] * 100) if metrics["total_detections"] > 0 else 0
240
+ report_content.append(f"<li>{item['type']}: {item['count']} ({percentage:.1f}%)</li>")
241
+ report_content.extend([
242
+ "</ul>",
243
+ f"<p><strong>Processing Time:</strong> {total_time:.1f} seconds</p>",
244
+ f"<p><strong>Average Frame Time:</strong> {sum(frame_times)/len(frame_times):.1f} ms</p>" if frame_times else "<p><strong>Average Frame Time:</strong> N/A</p>",
245
+ f"<p><strong>Average Resize Time:</strong> {sum(resize_times)/len(resize_times):.1f} ms</p>" if resize_times else "<p><strong>Average Resize Time:</strong> N/A</p>",
246
+ f"<p><strong>Average Inference Time:</strong> {sum(inference_times)/len(inference_times):.1f} ms</p>" if inference_times else "<p><strong>Average Inference Time:</strong> N/A</p>",
247
+ f"<p><strong>Average I/O Time:</strong> {sum(io_times)/len(io_times):.1f} ms</p>" if io_times else "<p><strong>Average I/O Time:</strong> N/A</p>",
248
+ f"<p><strong>Timestamp:</strong> {metrics.get('timestamp', 'N/A')}</p>",
249
+ "<p><strong>Summary:</strong> Potholes and cracks detected in high-traffic areas.</p>",
250
+ "",
251
+ "<h2>5. Output File Structure</h2>",
252
+ "<p>ZIP file contains:</p>",
253
+ "<ul>",
254
+ f"<li><code>drone_analysis_report_{timestamp}.html</code>: This report</li>",
255
+ "<li><code>outputs/processed_output.mp4</code>: Processed video with annotations</li>",
256
+ f"<li><code>outputs/chart_{timestamp}.png</code>: Detection trend chart</li>",
257
+ f"<li><code>outputs/map_{timestamp}.png</code>: Issue locations map</li>",
258
+ "<li><code>captured_frames/detected_&lt;frame&gt;.jpg</code>: Geotagged images for detected issues</li>",
259
+ "<li><code>flight_logs/flight_log_&lt;frame&gt;.csv</code>: Flight logs matching image frames</li>",
260
+ "</ul>",
261
+ "<p><strong>Note:</strong> Images and logs share frame numbers (e.g., <code>detected_000001.jpg</code> corresponds to <code>flight_log_000001.csv</code>).</p>",
262
+ "",
263
+ "<h2>6. Geotagged Images</h2>",
264
+ f"<p><strong>Total Images:</strong> {len(detected_issues)}</p>",
265
+ f"<p><strong>Storage:</strong> Data Lake <code>/project_xyz/images/{datetime.now().strftime('%Y%m%d')}</code></p>",
266
+ "",
267
+ "<table>",
268
+ "<tr><th>Frame</th><th>Issue Type</th><th>GPS (Lat, Lon)</th><th>Timestamp</th><th>Confidence</th><th>Image Path</th></tr>"
269
+ ])
270
+
271
+ for detection in all_detections[:100]:
272
+ report_content.append(
273
+ f"<tr><td>{detection['frame']:06d}</td><td>{detection['label']}</td><td>({detection['gps'][0]:.6f}, {detection['gps'][1]:.6f})</td><td>{detection['timestamp']}</td><td>{detection['conf']:.1f}</td><td>captured_frames/{os.path.basename(detection['path'])}</td></tr>"
274
+ )
275
+
276
+ report_content.extend([
277
+ "</table>",
278
+ "",
279
+ "<h2>7. Flight Logs</h2>",
280
+ f"<p><strong>Total Logs:</strong> {len(detected_issues)}</p>",
281
+ f"<p><strong>Storage:</strong> Data Lake <code>/project_xyz/flight_logs/{datetime.now().strftime('%Y%m%d')}</code></p>",
282
+ "",
283
+ "<table>",
284
+ "<tr><th>Frame</th><th>Timestamp</th><th>Latitude</th><th>Longitude</th><th>Speed (m/s)</th><th>Satellites</th><th>Altitude (m)</th><th>Log Path</th></tr>"
285
+ ])
286
+
287
+ for detection in all_detections[:100]:
288
+ log_path = f"flight_logs/flight_log_{detection['frame']:06d}.csv"
289
+ report_content.append(
290
+ f"<tr><td>{detection['frame']:06d}</td><td>{detection['timestamp']}</td><td>{detection['gps'][0]:.6f}</td><td>{detection['gps'][1]:.6f}</td><td>5.0</td><td>12</td><td>60</td><td>{log_path}</td></tr>"
291
+ )
292
+
293
+ report_content.extend([
294
+ "</table>",
295
+ "",
296
+ "<h2>8. Processed Video</h2>",
297
+ f"<p><strong>Path:</strong> outputs/processed_output.mp4</p>",
298
+ f"<p><strong>Frames:</strong> {output_frames}</p>",
299
+ f"<p><strong>FPS:</strong> {output_fps:.1f}</p>",
300
+ f"<p><strong>Duration:</strong> {output_duration:.1f} seconds</p>",
301
+ "",
302
+ "<h2>9. Visualizations</h2>",
303
+ f"<p><strong>Detection Trend Chart:</strong> outputs/chart_{timestamp}.png</p>",
304
+ f"<p><strong>Issue Locations Map:</strong> outputs/map_{timestamp}.png</p>",
305
+ "",
306
+ "<h2>10. Processing Timestamps</h2>",
307
+ f"<p><strong>Total Processing Time:</strong> {total_time:.1f} seconds</p>",
308
+ "<p><strong>Log Entries (Last 10):</strong></p>",
309
+ "<ul>"
310
+ ])
311
+
312
+ for entry in log_entries[-10:]:
313
+ report_content.append(f"<li>{entry}</li>")
314
+
315
+ report_content.extend([
316
+ "</ul>",
317
+ "",
318
+ "<h2>11. Stakeholder Validation</h2>",
319
+ "<ul>",
320
+ "<li><strong>AE/IE Comments:</strong> [Pending]</li>",
321
+ "<li><strong>PD/RO Comments:</strong> [Pending]</li>",
322
+ "</ul>",
323
+ "",
324
+ "<h2>12. Recommendations</h2>",
325
+ "<ul>",
326
+ "<li>Repair potholes in high-traffic areas.</li>",
327
+ "<li>Seal cracks to prevent further degradation.</li>",
328
+ "<li>Schedule a follow-up survey.</li>",
329
+ "</ul>",
330
+ "",
331
+ "<h2>13. Data Lake References</h2>",
332
+ "<ul>",
333
+ f"<li><strong>Images:</strong> <code>/project_xyz/images/{datetime.now().strftime('%Y%m%d')}</code></li>",
334
+ f"<li><strong>Flight Logs:</strong> <code>/project_xyz/flight_logs/{datetime.now().strftime('%Y%m%d')}</code></li>",
335
+ f"<li><strong>Video:</strong> <code>/project_xyz/videos/processed_output_{timestamp}.mp4</code></li>",
336
+ f"<li><strong>DAMS Dashboard:</strong> <code>/project_xyz/dams/{datetime.now().strftime('%Y%m%d')}</code></li>",
337
+ "</ul>",
338
+ "",
339
+ "<h2>14. Captured Images</h2>",
340
+ "<p>Below are the embedded images from the captured frames directory showing detected issues:</p>",
341
+ ""
342
+ ])
343
+
344
+ for image_path in detected_issues:
345
+ if os.path.exists(image_path):
346
+ image_name = os.path.basename(image_path)
347
+ try:
348
+ with open(image_path, "rb") as image_file:
349
+ base64_string = base64.b64encode(image_file.read()).decode('utf-8')
350
+ report_content.append(f"<img src='data:image/jpeg;base64,{base64_string}' alt='{image_name}'>")
351
+ report_content.append(f"<p class='caption'>Image: {image_name}</p>")
352
+ report_content.append("")
353
+ except Exception as e:
354
+ log_entries.append(f"Error: Failed to encode image {image_name} to base64: {str(e)}")
355
+
356
+ report_content.extend([
357
+ "</body>",
358
+ "</html>"
359
+ ])
360
+
361
+ try:
362
+ with open(report_path, 'w') as f:
363
+ f.write("\n".join(report_content))
364
+ log_entries.append(f"Report saved at: {report_path}")
365
+ return report_path
366
+ except Exception as e:
367
+ log_entries.append(f"Error: Failed to save report: {str(e)}")
368
+ return ""
369
+
370
+ def process_video(video, resize_width=1920, resize_height=1080, frame_skip=10):
371
+ global frame_count, last_metrics, detected_counts, detected_issues, gps_coordinates, log_entries
372
+ frame_count = 0
373
+ detected_counts.clear()
374
+ detected_issues.clear()
375
+ gps_coordinates.clear()
376
+ log_entries.clear()
377
+ last_metrics = {}
378
+
379
+ if video is None:
380
+ log_entries.append("Error: No video uploaded")
381
+ return None, json.dumps({"error": "No video uploaded"}, indent=2), "\n".join(log_entries), [], None, None, None
382
+
383
+ log_entries.append("Starting video processing...")
384
+ start_time = time.time()
385
+ cap = cv2.VideoCapture(video)
386
+ if not cap.isOpened():
387
+ log_entries.append("Error: Could not open video file")
388
+ return None, json.dumps({"error": "Could not open video file"}, indent=2), "\n".join(log_entries), [], None, None, None
389
+
390
+ frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
391
+ frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
392
+ input_resolution = frame_width * frame_height
393
+ fps = cap.get(cv2.CAP_PROP_FPS)
394
+ total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
395
+ log_entries.append(f"Input video: {frame_width}x{frame_height} at {fps} FPS, {total_frames} frames")
396
+
397
+ out_width, out_height = resize_width, resize_height
398
+ output_path = os.path.join(OUTPUT_DIR, "processed_output.mp4")
399
+ out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'XVID'), fps, (out_width, out_height))
400
+ if not out.isOpened():
401
+ log_entries.append("Error: Failed to initialize video writer")
402
+ cap.release()
403
+ return None, json.dumps({"error": "Video writer failed"}, indent=2), "\n".join(log_entries), [], None, None, None
404
+
405
+ processed_frames = 0
406
+ all_detections = []
407
+ frame_times = []
408
+ inference_times = []
409
+ resize_times = []
410
+ io_times = []
411
+ detection_frame_count = 0
412
+ output_frame_count = 0
413
+ last_annotated_frame = None
414
+ disk_space_threshold = 1024 * 1024 * 1024
415
+
416
+ while True:
417
+ ret, frame = cap.read()
418
+ if not ret:
419
+ break
420
+ frame_count += 1
421
+ if frame_count % frame_skip != 0:
422
+ continue
423
+ processed_frames += 1
424
+ frame_start = time.time()
425
+
426
+ if os.statvfs(os.path.dirname(output_path)).f_frsize * os.statvfs(os.path.dirname(output_path)).f_bavail < disk_space_threshold:
427
+ log_entries.append("Error: Insufficient disk space")
428
+ break
429
+
430
+ frame = cv2.resize(frame, (out_width, out_height))
431
+ resize_times.append((time.time() - frame_start) * 1000)
432
+
433
+ if not check_image_quality(frame, input_resolution):
434
+ continue
435
+
436
+ inference_start = time.time()
437
+ results = model(frame, verbose=False, conf=0.5, iou=0.7)
438
+ annotated_frame = results[0].plot()
439
+ inference_times.append((time.time() - inference_start) * 1000)
440
+
441
+ frame_timestamp = frame_count / fps if fps > 0 else 0
442
+ timestamp_str = f"{int(frame_timestamp // 60):02d}:{int(frame_timestamp % 60):02d}"
443
+
444
+ gps_coord = [17.385044 + (frame_count * 0.0001), 78.486671 + (frame_count * 0.0001)]
445
+ gps_coordinates.append(gps_coord)
446
+
447
+ io_start = time.time()
448
+ frame_detections = []
449
+ for detection in results[0].boxes:
450
+ cls = int(detection.cls)
451
+ conf = float(detection.conf)
452
+ box = detection.xyxy[0].cpu().numpy().astype(int).tolist()
453
+ label = model.names[cls]
454
+ if label in DETECTION_CLASSES:
455
+ detection_data = {
456
+ "label": label,
457
+ "box": box,
458
+ "conf": conf,
459
+ "gps": gps_coord,
460
+ "timestamp": timestamp_str,
461
+ "frame": frame_count,
462
+ "path": os.path.join(CAPTURED_FRAMES_DIR, f"detected_{frame_count:06d}.jpg")
463
+ }
464
+ frame_detections.append(detection_data)
465
+ log_entries.append(f"Frame {frame_count} at {timestamp_str}: Detected {label} with confidence {conf:.2f}")
466
+
467
+ if frame_detections:
468
+ detection_frame_count += 1
469
+ if detection_frame_count % SAVE_IMAGE_INTERVAL == 0:
470
+ captured_frame_path = os.path.join(CAPTURED_FRAMES_DIR, f"detected_{frame_count:06d}.jpg")
471
+ if cv2.imwrite(captured_frame_path, annotated_frame):
472
+ if write_geotag(captured_frame_path, gps_coord):
473
+ detected_issues.append(captured_frame_path)
474
+ if len(detected_issues) > MAX_IMAGES:
475
+ os.remove(detected_issues.pop(0))
476
+ else:
477
+ log_entries.append(f"Frame {frame_count}: Geotagging failed")
478
+ else:
479
+ log_entries.append(f"Error: Failed to save frame at {captured_frame_path}")
480
+ write_flight_log(frame_count, gps_coord, timestamp_str)
481
+
482
+ io_times.append((time.time() - io_start) * 1000)
483
+
484
+ out.write(annotated_frame)
485
+ output_frame_count += 1
486
+ last_annotated_frame = annotated_frame
487
+ if frame_skip > 1:
488
+ for _ in range(frame_skip - 1):
489
+ out.write(annotated_frame)
490
+ output_frame_count += 1
491
+
492
+ detected_counts.append(len(frame_detections))
493
+ all_detections.extend(frame_detections)
494
+
495
+ frame_times.append((time.time() - frame_start) * 1000)
496
+ if len(log_entries) > 50:
497
+ log_entries.pop(0)
498
+
499
+ if time.time() - start_time > 600:
500
+ log_entries.append("Error: Processing timeout after 600 seconds")
501
+ break
502
+
503
+ while output_frame_count < total_frames and last_annotated_frame is not None:
504
+ out.write(last_annotated_frame)
505
+ output_frame_count += 1
506
+
507
+ last_metrics = update_metrics(all_detections)
508
+
509
+ out.release()
510
+ cap.release()
511
+
512
+ cap = cv2.VideoCapture(output_path)
513
+ if not cap.isOpened():
514
+ log_entries.append("Error: Failed to open output video for verification")
515
+ output_path = None
516
+ else:
517
+ output_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
518
+ output_fps = cap.get(cv2.CAP_PROP_FPS)
519
+ output_duration = output_frames / output_fps if output_fps > 0 else 0
520
+ cap.release()
521
+ log_entries.append(f"Output video: {output_frames} frames, {output_fps:.2f} FPS, {output_duration:.2f} seconds")
522
+
523
+ total_time = time.time() - start_time
524
+ log_entries.append(f"Processing completed in {total_time:.2f} seconds")
525
+
526
+ chart_path = generate_line_chart()
527
+ map_path = generate_map(gps_coordinates[-5:], all_detections)
528
+ report_path = generate_report(
529
+ last_metrics,
530
+ detected_issues,
531
+ gps_coordinates,
532
+ all_detections,
533
+ frame_count,
534
+ total_time,
535
+ output_frames,
536
+ output_fps,
537
+ output_duration,
538
+ detection_frame_count,
539
+ chart_path,
540
+ map_path,
541
+ frame_times,
542
+ resize_times,
543
+ inference_times,
544
+ io_times
545
+ )
546
+ output_zip_path = zip_all_outputs(report_path, output_path, chart_path, map_path)
547
+
548
+ return (
549
+ output_path,
550
+ json.dumps(last_metrics, indent=2),
551
+ "\n".join(log_entries[-10:]),
552
+ detected_issues,
553
+ chart_path,
554
+ map_path,
555
+ output_zip_path
556
+ )
557
+
558
+ with gr.Blocks(theme=gr.themes.Soft(primary_hue="orange")) as iface:
559
+ gr.Markdown("# NHAI Road Defect Detection Dashboard")
560
+ with gr.Row():
561
+ with gr.Column(scale=3):
562
+ video_input = gr.Video(label="Upload Video")
563
+ width_slider = gr.Slider(320, 1920, value=1920, label="Output Width", step=1)
564
+ height_slider = gr.Slider(240, 1080, value=1080, label="Output Height", step=1)
565
+ skip_slider = gr.Slider(1, 20, value=10, label="Frame Skip", step=1)
566
+ process_btn = gr.Button("Process Video", variant="primary")
567
+ with gr.Column(scale=1):
568
+ metrics_output = gr.Textbox(label="Detection Metrics", lines=5, interactive=False)
569
+ with gr.Row():
570
+ video_output = gr.Video(label="Processed Video")
571
+ issue_gallery = gr.Gallery(label="Detected Issues", columns=4, height="auto", object_fit="contain")
572
+ with gr.Row():
573
+ chart_output = gr.Image(label="Detection Trend")
574
+ map_output = gr.Image(label="Issue Locations Map")
575
+ with gr.Row():
576
+ logs_output = gr.Textbox(label="Logs", lines=5, interactive=False)
577
+ with gr.Row():
578
+ gr.Markdown("## Download Results")
579
+ with gr.Row():
580
+ output_zip_download = gr.File(label="Download All Outputs (ZIP)")
581
+
582
+ process_btn.click(
583
+ fn=process_video,
584
+ inputs=[video_input, width_slider, height_slider, skip_slider],
585
+ outputs=[
586
+ video_output,
587
+ metrics_output,
588
+ logs_output,
589
+ issue_gallery,
590
+ chart_output,
591
+ map_output,
592
+ output_zip_download
593
+ ]
594
+ )
595
+
596
+ if __name__ == "__main__":
597
+ iface.launch()