Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,10 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
from ultralytics import YOLO
|
5 |
-
import os
|
6 |
import tempfile
|
7 |
from moviepy.editor import ImageSequenceClip
|
8 |
from PIL import Image
|
@@ -16,7 +18,7 @@ def process_video(video_path, model_name, conf_threshold=0.4):
|
|
16 |
Process the input video frame by frame using the selected YOLO model,
|
17 |
draw bounding boxes, and return the processed video path.
|
18 |
"""
|
19 |
-
# Select model
|
20 |
model = model_yolo11 if model_name == "YOLO11n" else model_best
|
21 |
|
22 |
# Open video capture
|
@@ -37,7 +39,7 @@ def process_video(video_path, model_name, conf_threshold=0.4):
|
|
37 |
if not ret:
|
38 |
break
|
39 |
|
40 |
-
# Perform
|
41 |
results = model.predict(
|
42 |
source=frame,
|
43 |
conf=conf_threshold,
|
@@ -46,21 +48,21 @@ def process_video(video_path, model_name, conf_threshold=0.4):
|
|
46 |
show_conf=True
|
47 |
)
|
48 |
|
49 |
-
# Draw bounding boxes
|
50 |
for result in results:
|
51 |
-
im_array = result.plot()
|
52 |
-
processed_frames.append(im_array[..., ::-1])
|
53 |
|
54 |
cap.release()
|
55 |
|
56 |
-
# Save processed frames to
|
57 |
temp_video_path = os.path.join(tempfile.gettempdir(), "output.mp4")
|
58 |
clip = ImageSequenceClip(processed_frames, fps=fps)
|
59 |
clip.write_videofile(temp_video_path, codec='libx264')
|
60 |
|
61 |
return temp_video_path
|
62 |
|
63 |
-
#
|
64 |
with gr.Blocks() as app:
|
65 |
gr.HTML("""
|
66 |
<h1 style='text-align: center'>
|
@@ -99,4 +101,5 @@ with gr.Blocks() as app:
|
|
99 |
)
|
100 |
|
101 |
if __name__ == "__main__":
|
102 |
-
app.launch()
|
|
|
|
1 |
+
```python
|
2 |
+
import os
|
3 |
+
os.environ['YOLO_CONFIG_DIR'] = '/tmp/Ultralytics' # Set Ultralytics config path
|
4 |
import gradio as gr
|
5 |
import cv2
|
6 |
import numpy as np
|
7 |
from ultralytics import YOLO
|
|
|
8 |
import tempfile
|
9 |
from moviepy.editor import ImageSequenceClip
|
10 |
from PIL import Image
|
|
|
18 |
Process the input video frame by frame using the selected YOLO model,
|
19 |
draw bounding boxes, and return the processed video path.
|
20 |
"""
|
21 |
+
# Select model to use
|
22 |
model = model_yolo11 if model_name == "YOLO11n" else model_best
|
23 |
|
24 |
# Open video capture
|
|
|
39 |
if not ret:
|
40 |
break
|
41 |
|
42 |
+
# Perform detection
|
43 |
results = model.predict(
|
44 |
source=frame,
|
45 |
conf=conf_threshold,
|
|
|
48 |
show_conf=True
|
49 |
)
|
50 |
|
51 |
+
# Draw bounding boxes
|
52 |
for result in results:
|
53 |
+
im_array = result.plot() # Plot boxes
|
54 |
+
processed_frames.append(im_array[..., ::-1]) # Convert BGR to RGB
|
55 |
|
56 |
cap.release()
|
57 |
|
58 |
+
# Save processed frames to temp video
|
59 |
temp_video_path = os.path.join(tempfile.gettempdir(), "output.mp4")
|
60 |
clip = ImageSequenceClip(processed_frames, fps=fps)
|
61 |
clip.write_videofile(temp_video_path, codec='libx264')
|
62 |
|
63 |
return temp_video_path
|
64 |
|
65 |
+
# Gradio interface
|
66 |
with gr.Blocks() as app:
|
67 |
gr.HTML("""
|
68 |
<h1 style='text-align: center'>
|
|
|
101 |
)
|
102 |
|
103 |
if __name__ == "__main__":
|
104 |
+
app.launch()
|
105 |
+
```
|