import gradio as gr import torch import cv2 from ultralytics import YOLO # Safe load method to handle custom YOLO class during deserialization def safe_load_yolo_model(path): # Add necessary safe globals to allow the detection model class during loading torch.serialization.add_safe_globals([torch, 'ultralytics.nn.tasks.DetectionModel']) return YOLO(path) # Load YOLO models model_yolo11 = safe_load_yolo_model('./data/yolo11n.pt') model_best = safe_load_yolo_model('./data/best.pt') def process_video(video): # Read video input cap = cv2.VideoCapture(video.name) fps = cap.get(cv2.CAP_PROP_FPS) frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # Create a VideoWriter object to save the output video fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Codec for .mp4 out = cv2.VideoWriter('output_video.mp4', fourcc, fps, (frame_width, frame_height)) while cap.isOpened(): ret, frame = cap.read() if not ret: break # Use both YOLO models for detection results_yolo11 = model_yolo11(frame) results_best = model_best(frame) # Combine the results from both models # For simplicity, we will overlay bounding boxes and labels from both models for result in results_yolo11: boxes = result.boxes for box in boxes: x1, y1, x2, y2 = map(int, box.xyxy[0].tolist()) cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2) label = f"YOLOv11: {box.cls[0]} - {box.conf[0]:.2f}" cv2.putText(frame, label, (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2) for result in results_best: boxes = result.boxes for box in boxes: x1, y1, x2, y2 = map(int, box.xyxy[0].tolist()) cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), 2) label = f"Best: {box.cls[0]} - {box.conf[0]:.2f}" cv2.putText(frame, label, (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 0, 0), 2) # Write the processed frame to the output video out.write(frame) cap.release() out.release() return 'output_video.mp4' # Gradio interface iface = gr.Interface(fn=process_video, inputs=gr.Video(), outputs=gr.Video(), live=True) # Launch the app iface.launch()