import gradio as gr import torch import cv2 from ultralytics import YOLO # Load YOLO models def safe_load_yolo_model(path): torch.serialization.add_safe_globals([torch, 'ultralytics.nn.tasks.DetectionModel']) return YOLO(path) # Load the models model_yolo11 = safe_load_yolo_model('./data/yolo11n.pt') model_best = safe_load_yolo_model('./data/best.pt') # Class names for YOLO model (replace with actual class names used in your YOLO model) yolo_classes = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe'] # Class names for best.pt model (assumed classes for crack and pothole) best_classes = ['Crack', 'Pothole'] def process_video(video): # Open the video using OpenCV cap = cv2.VideoCapture(video) fps = cap.get(cv2.CAP_PROP_FPS) frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # Create VideoWriter to save output video fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Codec for .mp4 out = cv2.VideoWriter('output_video.mp4', fourcc, fps, (frame_width, frame_height)) while cap.isOpened(): ret, frame = cap.read() if not ret: break # Detect with YOLOv11 (general object detection model) results_yolo11 = model_yolo11(frame) # Detect with best.pt (specialized model for cracks and potholes) results_best = model_best(frame) # Draw bounding boxes and labels for YOLOv11 (General Object Detection) for result in results_yolo11: boxes = result.boxes for box in boxes: x1, y1, x2, y2 = map(int, box.xyxy[0].tolist()) class_id = int(box.cls[0]) # Class index for YOLO label = f"YOLO: {yolo_classes[class_id]} - {box.conf[0]:.2f}" # Map class_id to class name cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2) cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2) # Draw bounding boxes and labels for best.pt (Crack and Pothole detection) for result in results_best: boxes = result.boxes for box in boxes: x1, y1, x2, y2 = map(int, box.xyxy[0].tolist()) class_id = int(box.cls[0]) # Class index for best.pt label = f"Best: {best_classes[class_id]} - {box.conf[0]:.2f}" # Map class_id to specific labels cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), 2) cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 0, 0), 2) # Write the processed frame to the output video out.write(frame) cap.release() out.release() return 'output_video.mp4' # Gradio interface iface = gr.Interface(fn=process_video, inputs=gr.Video(), outputs=gr.Video(), live=True) # Launch the app iface.launch()