import os os.environ['YOLO_CONFIG_DIR'] = '/tmp/Ultralytics' # Set Ultralytics config path import gradio as gr import cv2 import numpy as np from ultralytics import YOLO import tempfile from moviepy.editor import ImageSequenceClip from PIL import Image # Load both YOLO models model_yolo11 = YOLO('./data/yolo11n.pt') model_best = YOLO('./data/best.pt') def process_video(video_path, model_name, conf_threshold=0.4): """ Process the input video frame by frame using the selected YOLO model, draw bounding boxes, and return the processed video path. """ # Select model to use model = model_yolo11 if model_name == "YOLO11n" else model_best # Open video capture cap = cv2.VideoCapture(video_path) if not cap.isOpened(): raise ValueError("Could not open video file") # Get video properties fps = int(cap.get(cv2.CAP_PROP_FPS)) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # Store processed frames processed_frames = [] while cap.isOpened(): ret, frame = cap.read() if not ret: break # Perform detection results = model.predict( source=frame, conf=conf_threshold, imgsz=640, show_labels=True, show_conf=True ) # Draw bounding boxes for result in results: im_array = result.plot() # Plot boxes processed_frames.append(im_array[..., ::-1]) # Convert BGR to RGB cap.release() # Save processed frames to temp video temp_video_path = os.path.join(tempfile.gettempdir(), "output.mp4") clip = ImageSequenceClip(processed_frames, fps=fps) clip.write_videofile(temp_video_path, codec='libx264') return temp_video_path # Gradio interface with gr.Blocks() as app: gr.HTML("""