import gradio as gr import numpy as np import cv2 from core_pipeline import extract_frames, detect_trees, plot_detections def process_video(video_file): if video_file is None: return None video_path = video_file.name # ✅ fix for NamedString input frames = extract_frames(video_path) results = [] for i, frame in enumerate(frames[:3]): # Show top 3 sample frames detected, bboxes, confs, labels = detect_trees(frame) annotated = plot_detections(detected, bboxes) results.append(annotated) if results: preview = np.hstack(results) return preview return None gr.Interface( fn=process_video, inputs=gr.File(label="Upload Drone Video", file_types=[".mp4"]), outputs=gr.Image(label="Tree Detections (Sample Frames)"), title="🌳 Drone Tree Detection App", description="Upload top-down drone footage (.mp4). This app detects trees using YOLOv8 and shows sample frames with bounding boxes." ).launch()