Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,30 +1,110 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
import cv2
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import gradio as gr
|
4 |
+
from ultralytics import YOLO
|
5 |
+
from transformers import AutoImageProcessor, AutoModelForDepthEstimation
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
# Load YOLO model for tree detection
|
9 |
+
# Replace "path_to_your_yolo_model.pt" with your model path (e.g., local or Hugging Face Hub)
|
10 |
+
yolo_model = YOLO("path_to_your_yolo_model.pt") # Update with your YOLO model path
|
11 |
+
|
12 |
+
# Load depth estimation model and processor from Hugging Face
|
13 |
+
processor = AutoImageProcessor.from_pretrained("Intel/dpt-large")
|
14 |
+
depth_model = AutoModelForDepthEstimation.from_pretrained("Intel/dpt-large")
|
15 |
+
|
16 |
+
# Function to process image and estimate tree heights
|
17 |
+
def process_image(image, focal_length_mm=3.6, sensor_height_mm=4.8, depth_scale=100):
|
18 |
+
"""
|
19 |
+
Process an input image to detect trees and estimate their heights.
|
20 |
+
Args:
|
21 |
+
image: PIL Image from Gradio
|
22 |
+
focal_length_mm: Camera focal length in millimeters (default: 3.6)
|
23 |
+
sensor_height_mm: Camera sensor height in millimeters (default: 4.8)
|
24 |
+
depth_scale: Scaling factor to convert depth map to centimeters (default: 100)
|
25 |
+
Returns:
|
26 |
+
Annotated image and JSON with tree heights
|
27 |
+
"""
|
28 |
+
# Convert PIL image to OpenCV format (BGR)
|
29 |
+
image_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
30 |
+
image_height = image_cv.shape[0] # Image height in pixels
|
31 |
+
|
32 |
+
# Step 1: Run YOLO to detect trees
|
33 |
+
results = yolo_model(image_cv)
|
34 |
+
boxes = results[0].boxes.xyxy.cpu().numpy() # Bounding boxes [x_min, y_min, x_max, y_max]
|
35 |
+
|
36 |
+
# Step 2: Prepare image for depth estimation
|
37 |
+
# Convert OpenCV image (BGR) to PIL for transformers
|
38 |
+
image_pil = Image.fromarray(cv2.cvtColor(image_cv, cv2.COLOR_BGR2RGB))
|
39 |
+
# Preprocess image for depth model
|
40 |
+
inputs = processor(images=image_pil, return_tensors="pt")
|
41 |
+
|
42 |
+
# Step 3: Run depth estimation
|
43 |
+
with torch.no_grad():
|
44 |
+
outputs = depth_model(**inputs)
|
45 |
+
predicted_depth = outputs.predicted_depth
|
46 |
+
|
47 |
+
# Resize depth map to match input image size
|
48 |
+
depth_map = torch.nn.functional.interpolate(
|
49 |
+
predicted_depth.unsqueeze(1),
|
50 |
+
size=(image_cv.shape[0], image_cv.shape[1]),
|
51 |
+
mode="bicubic",
|
52 |
+
align_corners=False,
|
53 |
+
).squeeze().cpu().numpy()
|
54 |
+
|
55 |
+
# Step 4: Process each detected tree
|
56 |
+
output = []
|
57 |
+
for box in boxes:
|
58 |
+
x_min, y_min, x_max, y_max = map(int, box)
|
59 |
+
h_pixel = y_max - y_min # Bounding box height in pixels
|
60 |
+
|
61 |
+
# Extract depth for the tree’s bounding box
|
62 |
+
depth_region = depth_map[y_min:y_max, x_min:x_max]
|
63 |
+
avg_depth = np.mean(depth_region) # Average depth (relative units)
|
64 |
+
|
65 |
+
# Convert depth to centimeters using scaling factor
|
66 |
+
distance_cm = avg_depth * depth_scale # Tune depth_scale based on testing
|
67 |
+
|
68 |
+
# Calculate tree height in centimeters
|
69 |
+
# Formula: H = (h_pixel * D * sensor_height) / (focal_length * image_height)
|
70 |
+
tree_height_cm = (h_pixel * distance_cm * sensor_height_mm) / (focal_length_mm * image_height)
|
71 |
+
tree_height_cm = round(tree_height_cm, 2) # Round to 2 decimal places
|
72 |
+
|
73 |
+
output.append({
|
74 |
+
"box": (x_min, y_min, x_max, y_max),
|
75 |
+
"height_cm": tree_height_cm
|
76 |
+
})
|
77 |
+
|
78 |
+
# Step 5: Draw results on the image
|
79 |
+
for item in output:
|
80 |
+
x_min, y_min, x_max, y_max = item["box"]
|
81 |
+
# Draw bounding box
|
82 |
+
cv2.rectangle(image_cv, (x_min, y_min), (x_max, y_max), (0, 255, 0), 2)
|
83 |
+
# Add height text
|
84 |
+
cv2.putText(image_cv, f"Height: {item['height_cm']} cm", (x_min, y_min - 10),
|
85 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
|
86 |
+
|
87 |
+
# Convert back to RGB for Gradio
|
88 |
+
image_rgb = cv2.cvtColor(image_cv, cv2.COLOR_BGR2RGB)
|
89 |
+
|
90 |
+
return image_rgb, output
|
91 |
+
|
92 |
+
# Create Gradio interface
|
93 |
+
iface = gr.Interface(
|
94 |
+
fn=process_image,
|
95 |
+
inputs=[
|
96 |
+
gr.Image(type="pil", label="Upload Image"),
|
97 |
+
gr.Number(label="Focal Length (mm)", value=3.6),
|
98 |
+
gr.Number(label="Sensor Height (mm)", value=4.8),
|
99 |
+
gr.Number(label="Depth Scale Factor", value=100)
|
100 |
+
],
|
101 |
+
outputs=[
|
102 |
+
gr.Image(label="Detected Trees with Heights"),
|
103 |
+
gr.JSON(label="Tree Heights (cm)")
|
104 |
+
],
|
105 |
+
title="Tree Detection and Height Estimation",
|
106 |
+
description="Upload an image to detect trees and estimate their heights in centimeters. Adjust camera parameters and depth scale as needed."
|
107 |
+
)
|
108 |
+
|
109 |
+
# Launch the interface
|
110 |
+
iface.launch()
|