from asyncio import constants import gradio as gr import requests import os import re import random # GPT-J-6B API API_URL = "https://api-inference.huggingface.co/models/EleutherAI/gpt-j-6B" #HF_TOKEN = os.environ["HF_TOKEN"] #headers = {"Authorization": f"Bearer {HF_TOKEN}"} prompt = """ Bilbo is a hobbit rogue who wears a brown cloak and carries a ring. Bremen is a human wizard, he wears a blue robe and carries a wand. """ examples = [["river"], ["night"], ["trees"],["table"],["laughs"]] def npc_randomize(): #name is a random combination of syllables vowels = list("aeiou") constants = list("bcdfghjklmnpqrstvwxyz") seperators=list("-'") name ="" for i in range(random.randint(2,4)): name += random.choice(constants) name += random.choice(vowels) if random.random()<0.5: name += random.choice(constants) if random.random()<0.1: name += random.choice(seperators) #capitalize first letter name = name[0].upper() + name[1:] races="""Dwarf Elf Halfling Human Dragonborn Gnome Half-elf Half-orc Tiefling Aarakocra Genasi Goliath""".split("\n") races=[x.strip() for x in races] race=random.choice(races) print("foo",races,race) classes="""Barbarian Bard Cleric Druid Fighter Monk Paladin Ranger Rogue Sorcerer Warlock Wizard""".split("\n") classes=[x.strip() for x in classes] characterClass=random.choice(classes) pronoun=random.choices(["he","she","they"],weights=[0.45,0.45,0.1],k=1)[0] return name,race,characterClass,pronoun def npc_generate(name,race,characterClass,pronoun): desc="{name} is a {race} {characterClass}, {pronoun}".format(name=name,race=race,characterClass=characterClass,pronoun=pronoun) p = prompt + "\n"+desc print(f"*****Inside poem_generate - Prompt is :{p}") json_ = {"inputs": p, "parameters": { "top_p": 0.9, "temperature": 1.1, "max_new_tokens": 50, "return_full_text": False, }} #response = requests.post(API_URL, headers=headers, json=json_) response = requests.post(API_URL, json=json_) output = response.json() print(f"If there was an error? Reason is : {output}") output_tmp = output[0]['generated_text'] print(f"GPTJ response without splits is: {output_tmp}") #poem = output[0]['generated_text'].split("\n\n")[0] # +"." if "\n\n" not in output_tmp: if output_tmp.find('.') != -1: idx = output_tmp.find('.') poem = output_tmp[:idx+1] else: idx = output_tmp.rfind('\n') poem = output_tmp[:idx] else: poem = output_tmp.split("\n\n")[0] # +"." poem = poem.replace('?','') print(f"Poem being returned is: {poem}") return desc+poem def poem_to_image(poem): print("*****Inside Poem_to_image") poem = " ".join(poem.split('\n')) poem = poem + ", character art, concept art, artstation" steps, width, height, images, diversity = '50','256','256','1',15 iface = gr.Interface.load("spaces/multimodalart/latentdiffusion") print("about to die",iface,dir(iface)) prompt = re.sub(r'[^a-zA-Z0-9 .]', '', poem) print("about to die",prompt) img=iface(poem, steps, width, height, images, diversity)[0] return img demo = gr.Blocks() with demo: gr.Markdown("

NPC Generator

") gr.Markdown( "based on Gradio poetry generator." "
first input name, race and class (or generate them randomly)
" "
Next, use GPT-J to generate a short description
" "
Finally, Generate an illustration 🎨 provided by Latent Diffusion model.
" ) with gr.Row(): b0 = gr.Button("Randomize name,race and class") b1 = gr.Button("Generate NPC") b2 = gr.Button("Generate Image") with gr.Row(): input_name = gr.Textbox(label="name",placeholder="Drizzt") input_race = gr.Textbox(label="race",placeholder="dark elf") input_class = gr.Textbox(label="class",placeholder="ranger") input_pronoun = gr.Textbox(label="pronoun",placeholder="he") with gr.Row(): poem_txt = gr.Textbox(label="description",lines=7) output_image = gr.Image(label="portrait",type="filepath", shape=(256,256)) b0.click(npc_randomize,inputs=[],outputs=[input_name,input_race,input_class,input_pronoun]) b1.click(npc_generate, inputs=[ input_name,input_race,input_class,input_pronoun], outputs=poem_txt) b2.click(poem_to_image, poem_txt, output_image) #examples=examples demo.launch(enable_queue=True, debug=True)