naman1102 commited on
Commit
12cbfd2
·
1 Parent(s): 865e2c1
Files changed (4) hide show
  1. analyzer.py +10 -11
  2. app.py +2 -2
  3. chatbot_page.py +4 -4
  4. repo_explorer.py +2 -2
analyzer.py CHANGED
@@ -15,7 +15,7 @@ def analyze_code(code: str) -> str:
15
  Returns the analysis as a string.
16
  """
17
  from openai import OpenAI
18
- client = OpenAI(api_key=os.getenv("modal_api"))
19
  client.base_url = os.getenv("base_url")
20
  system_prompt = (
21
  "You are a highly precise and strict JSON generator. Analyze the code given to you. "
@@ -27,7 +27,7 @@ def analyze_code(code: str) -> str:
27
  "{\n 'strength': '...', \n 'weaknesses': '...', \n 'speciality': '...', \n 'relevance rating': 'high'\n}"
28
  )
29
  response = client.chat.completions.create(
30
- model="Orion-zhen/Qwen2.5-Coder-7B-Instruct-AWQ", # Updated model
31
  messages=[
32
  {"role": "system", "content": system_prompt},
33
  {"role": "user", "content": code}
@@ -235,7 +235,7 @@ def analyze_code_chunk(code: str, user_requirements: str = "") -> str:
235
  Analyzes a code chunk and returns a JSON summary for that chunk.
236
  """
237
  from openai import OpenAI
238
- client = OpenAI(api_key=os.getenv("modal_api"))
239
  client.base_url = os.getenv("base_url")
240
 
241
  # Build the user requirements section
@@ -256,12 +256,11 @@ def analyze_code_chunk(code: str, user_requirements: str = "") -> str:
256
  )
257
 
258
  response = client.chat.completions.create(
259
- model="Orion-zhen/Qwen2.5-Coder-7B-Instruct-AWQ",
260
  messages=[
261
  {"role": "system", "content": chunk_prompt},
262
  {"role": "user", "content": code}
263
  ],
264
-
265
  temperature=0.4
266
  )
267
  return response.choices[0].message.content
@@ -271,7 +270,7 @@ def aggregate_chunk_analyses(chunk_jsons: list, user_requirements: str = "") ->
271
  Aggregates a list of chunk JSONs into a single JSON summary using the LLM.
272
  """
273
  from openai import OpenAI
274
- client = OpenAI(api_key=os.getenv("modal_api"))
275
  client.base_url = os.getenv("base_url")
276
 
277
  # Build the user requirements section
@@ -292,7 +291,7 @@ def aggregate_chunk_analyses(chunk_jsons: list, user_requirements: str = "") ->
292
  )
293
  user_content = "Here are the chunk analyses:\n" + "\n".join(chunk_jsons)
294
  response = client.chat.completions.create(
295
- model="Orion-zhen/Qwen2.5-Coder-7B-Instruct-AWQ",
296
  messages=[
297
  {"role": "system", "content": aggregation_prompt},
298
  {"role": "user", "content": user_content}
@@ -329,7 +328,7 @@ def analyze_repo_chunk_for_context(chunk: str, repo_id: str) -> str:
329
  """
330
  try:
331
  from openai import OpenAI
332
- client = OpenAI(api_key=os.getenv("modal_api"))
333
  client.base_url = os.getenv("base_url")
334
 
335
  context_prompt = f"""You are analyzing a chunk of code from the repository '{repo_id}' to create a conversational summary for a chatbot assistant.
@@ -349,7 +348,7 @@ Repository chunk:
349
  Provide a clear, conversational summary in 2-3 paragraphs:"""
350
 
351
  response = client.chat.completions.create(
352
- model="Orion-zhen/Qwen2.5-Coder-7B-Instruct-AWQ",
353
  messages=[
354
  {"role": "system", "content": "You are an expert code analyst creating conversational summaries for a repository assistant chatbot."},
355
  {"role": "user", "content": context_prompt}
@@ -385,7 +384,7 @@ def create_repo_context_summary(repo_content: str, repo_id: str) -> str:
385
  # Create final comprehensive summary
386
  try:
387
  from openai import OpenAI
388
- client = OpenAI(api_key=os.getenv("modal_api"))
389
  client.base_url = os.getenv("base_url")
390
 
391
  final_prompt = f"""Based on the following section summaries of repository '{repo_id}', create a comprehensive overview that a chatbot can use to answer user questions.
@@ -403,7 +402,7 @@ Create a well-structured overview covering:
403
  Make this comprehensive but conversational - it will be used by a chatbot to answer user questions about the repository."""
404
 
405
  response = client.chat.completions.create(
406
- model="Orion-zhen/Qwen2.5-Coder-7B-Instruct-AWQ",
407
  messages=[
408
  {"role": "system", "content": "You are creating a comprehensive repository summary for a chatbot assistant."},
409
  {"role": "user", "content": final_prompt}
 
15
  Returns the analysis as a string.
16
  """
17
  from openai import OpenAI
18
+ client = OpenAI(api_key=os.getenv("OpenAI_API"))
19
  client.base_url = os.getenv("base_url")
20
  system_prompt = (
21
  "You are a highly precise and strict JSON generator. Analyze the code given to you. "
 
27
  "{\n 'strength': '...', \n 'weaknesses': '...', \n 'speciality': '...', \n 'relevance rating': 'high'\n}"
28
  )
29
  response = client.chat.completions.create(
30
+ model="openai/gpt-4.1-nano", # Updated to GPT-4.1 Nano model
31
  messages=[
32
  {"role": "system", "content": system_prompt},
33
  {"role": "user", "content": code}
 
235
  Analyzes a code chunk and returns a JSON summary for that chunk.
236
  """
237
  from openai import OpenAI
238
+ client = OpenAI(api_key=os.getenv("OpenAI_API"))
239
  client.base_url = os.getenv("base_url")
240
 
241
  # Build the user requirements section
 
256
  )
257
 
258
  response = client.chat.completions.create(
259
+ model="openai/gpt-4.1-nano",
260
  messages=[
261
  {"role": "system", "content": chunk_prompt},
262
  {"role": "user", "content": code}
263
  ],
 
264
  temperature=0.4
265
  )
266
  return response.choices[0].message.content
 
270
  Aggregates a list of chunk JSONs into a single JSON summary using the LLM.
271
  """
272
  from openai import OpenAI
273
+ client = OpenAI(api_key=os.getenv("OpenAI_API"))
274
  client.base_url = os.getenv("base_url")
275
 
276
  # Build the user requirements section
 
291
  )
292
  user_content = "Here are the chunk analyses:\n" + "\n".join(chunk_jsons)
293
  response = client.chat.completions.create(
294
+ model="openai/gpt-4.1-nano",
295
  messages=[
296
  {"role": "system", "content": aggregation_prompt},
297
  {"role": "user", "content": user_content}
 
328
  """
329
  try:
330
  from openai import OpenAI
331
+ client = OpenAI(api_key=os.getenv("OpenAI_API"))
332
  client.base_url = os.getenv("base_url")
333
 
334
  context_prompt = f"""You are analyzing a chunk of code from the repository '{repo_id}' to create a conversational summary for a chatbot assistant.
 
348
  Provide a clear, conversational summary in 2-3 paragraphs:"""
349
 
350
  response = client.chat.completions.create(
351
+ model="openai/gpt-4.1-nano",
352
  messages=[
353
  {"role": "system", "content": "You are an expert code analyst creating conversational summaries for a repository assistant chatbot."},
354
  {"role": "user", "content": context_prompt}
 
384
  # Create final comprehensive summary
385
  try:
386
  from openai import OpenAI
387
+ client = OpenAI(api_key=os.getenv("OpenAI_API"))
388
  client.base_url = os.getenv("base_url")
389
 
390
  final_prompt = f"""Based on the following section summaries of repository '{repo_id}', create a comprehensive overview that a chatbot can use to answer user questions.
 
402
  Make this comprehensive but conversational - it will be used by a chatbot to answer user questions about the repository."""
403
 
404
  response = client.chat.completions.create(
405
+ model="openai/gpt-4.1-nano",
406
  messages=[
407
  {"role": "system", "content": "You are creating a comprehensive repository summary for a chatbot assistant."},
408
  {"role": "user", "content": final_prompt}
app.py CHANGED
@@ -124,11 +124,11 @@ Selected repositories:"""
124
 
125
  try:
126
  from openai import OpenAI
127
- client = OpenAI(api_key=os.getenv("modal_api"))
128
  client.base_url = os.getenv("base_url")
129
 
130
  response = client.chat.completions.create(
131
- model="Orion-zhen/Qwen2.5-Coder-7B-Instruct-AWQ",
132
  messages=[
133
  {"role": "system", "content": "You are an expert at analyzing and ranking repositories based on user requirements. Always return valid JSON."},
134
  {"role": "user", "content": prompt}
 
124
 
125
  try:
126
  from openai import OpenAI
127
+ client = OpenAI(api_key=os.getenv("OpenAI_API"))
128
  client.base_url = os.getenv("base_url")
129
 
130
  response = client.chat.completions.create(
131
+ model="openai/gpt-4.1-nano",
132
  messages=[
133
  {"role": "system", "content": "You are an expert at analyzing and ranking repositories based on user requirements. Always return valid JSON."},
134
  {"role": "user", "content": prompt}
chatbot_page.py CHANGED
@@ -17,7 +17,7 @@ conversation_history = []
17
  # Function to handle chat
18
  def chat_with_user(user_message, history):
19
  from openai import OpenAI
20
- client = OpenAI(api_key=os.getenv("modal_api"))
21
  client.base_url = os.getenv("base_url")
22
  # Build the message list for the LLM
23
  messages = [
@@ -29,7 +29,7 @@ def chat_with_user(user_message, history):
29
  messages.append({"role": "assistant", "content": msg[1]})
30
  messages.append({"role": "user", "content": user_message})
31
  response = client.chat.completions.create(
32
- model="Orion-zhen/Qwen2.5-Coder-7B-Instruct-AWQ",
33
  messages=messages,
34
  max_tokens=256,
35
  temperature=0.7
@@ -40,7 +40,7 @@ def chat_with_user(user_message, history):
40
  # Function to end chat and extract keywords
41
  def extract_keywords_from_conversation(history):
42
  from openai import OpenAI
43
- client = OpenAI(api_key=os.getenv("modal_api"))
44
  client.base_url = os.getenv("base_url")
45
  # Combine all user and assistant messages into a single string
46
  conversation = "\n".join([f"User: {msg[0]}\nAssistant: {msg[1]}" for msg in history if msg[1]])
@@ -56,7 +56,7 @@ def extract_keywords_from_conversation(history):
56
  "Conversation:\n" + conversation + "\n\nExtract about 5 keywords for Hugging Face repo search."
57
  )
58
  response = client.chat.completions.create(
59
- model="Orion-zhen/Qwen2.5-Coder-7B-Instruct-AWQ",
60
  messages=[
61
  {"role": "system", "content": system_prompt},
62
  {"role": "user", "content": user_prompt}
 
17
  # Function to handle chat
18
  def chat_with_user(user_message, history):
19
  from openai import OpenAI
20
+ client = OpenAI(api_key=os.getenv("OpenAI_API"))
21
  client.base_url = os.getenv("base_url")
22
  # Build the message list for the LLM
23
  messages = [
 
29
  messages.append({"role": "assistant", "content": msg[1]})
30
  messages.append({"role": "user", "content": user_message})
31
  response = client.chat.completions.create(
32
+ model="openai/gpt-4.1-nano",
33
  messages=messages,
34
  max_tokens=256,
35
  temperature=0.7
 
40
  # Function to end chat and extract keywords
41
  def extract_keywords_from_conversation(history):
42
  from openai import OpenAI
43
+ client = OpenAI(api_key=os.getenv("OpenAI_API"))
44
  client.base_url = os.getenv("base_url")
45
  # Combine all user and assistant messages into a single string
46
  conversation = "\n".join([f"User: {msg[0]}\nAssistant: {msg[1]}" for msg in history if msg[1]])
 
56
  "Conversation:\n" + conversation + "\n\nExtract about 5 keywords for Hugging Face repo search."
57
  )
58
  response = client.chat.completions.create(
59
+ model="openai/gpt-4.1-nano",
60
  messages=[
61
  {"role": "system", "content": system_prompt},
62
  {"role": "user", "content": user_prompt}
repo_explorer.py CHANGED
@@ -275,11 +275,11 @@ Answer the user's question based on your comprehensive knowledge of this reposit
275
 
276
  try:
277
  from openai import OpenAI
278
- client = OpenAI(api_key=os.getenv("modal_api"))
279
  client.base_url = os.getenv("base_url")
280
 
281
  response = client.chat.completions.create(
282
- model="Orion-zhen/Qwen2.5-Coder-7B-Instruct-AWQ",
283
  messages=[
284
  {"role": "system", "content": repo_system_prompt},
285
  {"role": "user", "content": user_message}
 
275
 
276
  try:
277
  from openai import OpenAI
278
+ client = OpenAI(api_key=os.getenv("OpenAI_API"))
279
  client.base_url = os.getenv("base_url")
280
 
281
  response = client.chat.completions.create(
282
+ model="openai/gpt-4.1-nano",
283
  messages=[
284
  {"role": "system", "content": repo_system_prompt},
285
  {"role": "user", "content": user_message}