Spaces:
Sleeping
Sleeping
butoon
Browse files- analyzer.py +148 -0
- app.py +7 -2
- repo_explorer.py +1 -148
analyzer.py
CHANGED
|
@@ -2,6 +2,7 @@ import openai
|
|
| 2 |
import os
|
| 3 |
import json
|
| 4 |
import re
|
|
|
|
| 5 |
|
| 6 |
def analyze_code(code: str) -> str:
|
| 7 |
"""
|
|
@@ -206,3 +207,150 @@ def analyze_combined_file(output_file="combined_repo.txt", user_requirements: st
|
|
| 206 |
return debug_output
|
| 207 |
except Exception as e:
|
| 208 |
return f"Error analyzing combined file: {e}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import os
|
| 3 |
import json
|
| 4 |
import re
|
| 5 |
+
from typing import Tuple
|
| 6 |
|
| 7 |
def analyze_code(code: str) -> str:
|
| 8 |
"""
|
|
|
|
| 207 |
return debug_output
|
| 208 |
except Exception as e:
|
| 209 |
return f"Error analyzing combined file: {e}"
|
| 210 |
+
|
| 211 |
+
def analyze_repo_chunk_for_context(chunk: str, repo_id: str) -> str:
|
| 212 |
+
"""
|
| 213 |
+
Analyze a repository chunk to create conversational context for the chatbot.
|
| 214 |
+
This creates summaries focused on helping users understand the repository.
|
| 215 |
+
"""
|
| 216 |
+
try:
|
| 217 |
+
from openai import OpenAI
|
| 218 |
+
client = OpenAI(api_key=os.getenv("modal_api"))
|
| 219 |
+
client.base_url = os.getenv("base_url")
|
| 220 |
+
|
| 221 |
+
context_prompt = f"""You are analyzing a chunk of code from the repository '{repo_id}' to create a conversational summary for a chatbot assistant.
|
| 222 |
+
|
| 223 |
+
Create a concise but informative summary that helps understand:
|
| 224 |
+
- What this code section does
|
| 225 |
+
- Key functions, classes, or components
|
| 226 |
+
- Important features or capabilities
|
| 227 |
+
- How it relates to the overall repository purpose
|
| 228 |
+
- Any notable patterns or technologies used
|
| 229 |
+
|
| 230 |
+
Focus on information that would be useful for answering user questions about the repository.
|
| 231 |
+
|
| 232 |
+
Repository chunk:
|
| 233 |
+
{chunk}
|
| 234 |
+
|
| 235 |
+
Provide a clear, conversational summary in 2-3 paragraphs:"""
|
| 236 |
+
|
| 237 |
+
response = client.chat.completions.create(
|
| 238 |
+
model="Orion-zhen/Qwen2.5-Coder-7B-Instruct-AWQ",
|
| 239 |
+
messages=[
|
| 240 |
+
{"role": "system", "content": "You are an expert code analyst creating conversational summaries for a repository assistant chatbot."},
|
| 241 |
+
{"role": "user", "content": context_prompt}
|
| 242 |
+
],
|
| 243 |
+
max_tokens=600, # Increased for more detailed analysis with larger chunks
|
| 244 |
+
temperature=0.3
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
return response.choices[0].message.content
|
| 248 |
+
|
| 249 |
+
except Exception as e:
|
| 250 |
+
logger.error(f"Error analyzing chunk for context: {e}")
|
| 251 |
+
return f"Code section analysis unavailable: {e}"
|
| 252 |
+
|
| 253 |
+
def create_repo_context_summary(repo_content: str, repo_id: str) -> str:
|
| 254 |
+
"""
|
| 255 |
+
Create a comprehensive context summary by analyzing the repository in chunks.
|
| 256 |
+
Returns a detailed summary that the chatbot can use to answer questions.
|
| 257 |
+
"""
|
| 258 |
+
try:
|
| 259 |
+
lines = repo_content.split('\n')
|
| 260 |
+
chunk_size = 1200 # Increased for better context and fewer API calls
|
| 261 |
+
chunk_summaries = []
|
| 262 |
+
|
| 263 |
+
logger.info(f"Analyzing repository {repo_id} in chunks for chatbot context")
|
| 264 |
+
|
| 265 |
+
for i in range(0, len(lines), chunk_size):
|
| 266 |
+
chunk = '\n'.join(lines[i:i+chunk_size])
|
| 267 |
+
if chunk.strip(): # Only analyze non-empty chunks
|
| 268 |
+
summary = analyze_repo_chunk_for_context(chunk, repo_id)
|
| 269 |
+
chunk_summaries.append(f"=== Section {len(chunk_summaries) + 1} ===\n{summary}")
|
| 270 |
+
|
| 271 |
+
# Create final comprehensive summary
|
| 272 |
+
try:
|
| 273 |
+
from openai import OpenAI
|
| 274 |
+
client = OpenAI(api_key=os.getenv("modal_api"))
|
| 275 |
+
client.base_url = os.getenv("base_url")
|
| 276 |
+
|
| 277 |
+
final_prompt = f"""Based on the following section summaries of repository '{repo_id}', create a comprehensive overview that a chatbot can use to answer user questions.
|
| 278 |
+
|
| 279 |
+
Section Summaries:
|
| 280 |
+
{chr(10).join(chunk_summaries)}
|
| 281 |
+
|
| 282 |
+
Create a well-structured overview covering:
|
| 283 |
+
1. Repository Purpose & Main Functionality
|
| 284 |
+
2. Key Components & Architecture
|
| 285 |
+
3. Important Features & Capabilities
|
| 286 |
+
4. Technology Stack & Dependencies
|
| 287 |
+
5. Usage Patterns & Examples
|
| 288 |
+
|
| 289 |
+
Make this comprehensive but conversational - it will be used by a chatbot to answer user questions about the repository."""
|
| 290 |
+
|
| 291 |
+
response = client.chat.completions.create(
|
| 292 |
+
model="Orion-zhen/Qwen2.5-Coder-7B-Instruct-AWQ",
|
| 293 |
+
messages=[
|
| 294 |
+
{"role": "system", "content": "You are creating a comprehensive repository summary for a chatbot assistant."},
|
| 295 |
+
{"role": "user", "content": final_prompt}
|
| 296 |
+
],
|
| 297 |
+
max_tokens=1500, # Increased for more comprehensive summaries
|
| 298 |
+
temperature=0.3
|
| 299 |
+
)
|
| 300 |
+
|
| 301 |
+
final_summary = response.choices[0].message.content
|
| 302 |
+
|
| 303 |
+
# Combine everything for the chatbot context
|
| 304 |
+
full_context = f"""=== REPOSITORY ANALYSIS FOR {repo_id.upper()} ===
|
| 305 |
+
|
| 306 |
+
{final_summary}
|
| 307 |
+
|
| 308 |
+
=== DETAILED SECTION SUMMARIES ===
|
| 309 |
+
{chr(10).join(chunk_summaries)}"""
|
| 310 |
+
|
| 311 |
+
logger.info(f"Created comprehensive context summary for {repo_id}")
|
| 312 |
+
return full_context
|
| 313 |
+
|
| 314 |
+
except Exception as e:
|
| 315 |
+
logger.error(f"Error creating final summary: {e}")
|
| 316 |
+
# Fallback to just section summaries
|
| 317 |
+
return f"=== REPOSITORY ANALYSIS FOR {repo_id.upper()} ===\n\n" + '\n\n'.join(chunk_summaries)
|
| 318 |
+
|
| 319 |
+
except Exception as e:
|
| 320 |
+
logger.error(f"Error creating repo context summary: {e}")
|
| 321 |
+
return f"Repository analysis unavailable: {e}"
|
| 322 |
+
|
| 323 |
+
def handle_load_repository(repo_id: str) -> Tuple[str, str]:
|
| 324 |
+
"""Load a specific repository and prepare it for exploration with chunk-based analysis."""
|
| 325 |
+
if not repo_id.strip():
|
| 326 |
+
return "Status: Please enter a repository ID.", ""
|
| 327 |
+
|
| 328 |
+
try:
|
| 329 |
+
logger.info(f"Loading repository for exploration: {repo_id}")
|
| 330 |
+
|
| 331 |
+
# Download and process the repository
|
| 332 |
+
try:
|
| 333 |
+
download_filtered_space_files(repo_id, local_dir="repo_files", file_extensions=['.py', '.md', '.txt'])
|
| 334 |
+
combined_text_path = combine_repo_files_for_llm()
|
| 335 |
+
|
| 336 |
+
except Exception as e:
|
| 337 |
+
logger.error(f"Error downloading repository {repo_id}: {e}")
|
| 338 |
+
error_status = f"❌ Error downloading repository: {e}"
|
| 339 |
+
return error_status, ""
|
| 340 |
+
|
| 341 |
+
with open(combined_text_path, "r", encoding="utf-8") as f:
|
| 342 |
+
repo_content = f.read()
|
| 343 |
+
|
| 344 |
+
status = f"✅ Repository '{repo_id}' loaded successfully!\\n📁 Files processed and ready for exploration.\\n🔄 Analyzing repository in chunks for comprehensive context...\\n💬 You can now ask questions about this repository."
|
| 345 |
+
|
| 346 |
+
# Create comprehensive context summary using chunk analysis
|
| 347 |
+
logger.info(f"Creating context summary for {repo_id}")
|
| 348 |
+
context_summary = create_repo_context_summary(repo_content, repo_id)
|
| 349 |
+
|
| 350 |
+
logger.info(f"Repository {repo_id} loaded and analyzed successfully for exploration")
|
| 351 |
+
return status, context_summary
|
| 352 |
+
|
| 353 |
+
except Exception as e:
|
| 354 |
+
logger.error(f"Error loading repository {repo_id}: {e}")
|
| 355 |
+
error_status = f"❌ Error loading repository: {e}"
|
| 356 |
+
return error_status, ""
|
app.py
CHANGED
|
@@ -8,10 +8,15 @@ import os
|
|
| 8 |
import time
|
| 9 |
|
| 10 |
# Import core logic from other modules, as in app_old.py
|
| 11 |
-
from analyzer import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
from hf_utils import download_filtered_space_files, search_top_spaces
|
| 13 |
from chatbot_page import chat_with_user, extract_keywords_from_conversation
|
| 14 |
-
from repo_explorer import create_repo_explorer_tab, setup_repo_explorer_events
|
| 15 |
|
| 16 |
# --- Configuration ---
|
| 17 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
|
|
| 8 |
import time
|
| 9 |
|
| 10 |
# Import core logic from other modules, as in app_old.py
|
| 11 |
+
from analyzer import (
|
| 12 |
+
combine_repo_files_for_llm,
|
| 13 |
+
parse_llm_json_response,
|
| 14 |
+
analyze_combined_file,
|
| 15 |
+
handle_load_repository
|
| 16 |
+
)
|
| 17 |
from hf_utils import download_filtered_space_files, search_top_spaces
|
| 18 |
from chatbot_page import chat_with_user, extract_keywords_from_conversation
|
| 19 |
+
from repo_explorer import create_repo_explorer_tab, setup_repo_explorer_events
|
| 20 |
|
| 21 |
# --- Configuration ---
|
| 22 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
repo_explorer.py
CHANGED
|
@@ -2,124 +2,12 @@ import gradio as gr
|
|
| 2 |
import os
|
| 3 |
import logging
|
| 4 |
from typing import List, Dict, Tuple
|
| 5 |
-
from analyzer import combine_repo_files_for_llm
|
| 6 |
from hf_utils import download_filtered_space_files
|
| 7 |
|
| 8 |
# Setup logger
|
| 9 |
logger = logging.getLogger(__name__)
|
| 10 |
|
| 11 |
-
def analyze_repo_chunk_for_context(chunk: str, repo_id: str) -> str:
|
| 12 |
-
"""
|
| 13 |
-
Analyze a repository chunk to create conversational context for the chatbot.
|
| 14 |
-
This creates summaries focused on helping users understand the repository.
|
| 15 |
-
"""
|
| 16 |
-
try:
|
| 17 |
-
from openai import OpenAI
|
| 18 |
-
client = OpenAI(api_key=os.getenv("modal_api"))
|
| 19 |
-
client.base_url = os.getenv("base_url")
|
| 20 |
-
|
| 21 |
-
context_prompt = f"""You are analyzing a chunk of code from the repository '{repo_id}' to create a conversational summary for a chatbot assistant.
|
| 22 |
-
|
| 23 |
-
Create a concise but informative summary that helps understand:
|
| 24 |
-
- What this code section does
|
| 25 |
-
- Key functions, classes, or components
|
| 26 |
-
- Important features or capabilities
|
| 27 |
-
- How it relates to the overall repository purpose
|
| 28 |
-
- Any notable patterns or technologies used
|
| 29 |
-
|
| 30 |
-
Focus on information that would be useful for answering user questions about the repository.
|
| 31 |
-
|
| 32 |
-
Repository chunk:
|
| 33 |
-
{chunk}
|
| 34 |
-
|
| 35 |
-
Provide a clear, conversational summary in 2-3 paragraphs:"""
|
| 36 |
-
|
| 37 |
-
response = client.chat.completions.create(
|
| 38 |
-
model="Orion-zhen/Qwen2.5-Coder-7B-Instruct-AWQ",
|
| 39 |
-
messages=[
|
| 40 |
-
{"role": "system", "content": "You are an expert code analyst creating conversational summaries for a repository assistant chatbot."},
|
| 41 |
-
{"role": "user", "content": context_prompt}
|
| 42 |
-
],
|
| 43 |
-
max_tokens=600, # Increased for more detailed analysis with larger chunks
|
| 44 |
-
temperature=0.3
|
| 45 |
-
)
|
| 46 |
-
|
| 47 |
-
return response.choices[0].message.content
|
| 48 |
-
|
| 49 |
-
except Exception as e:
|
| 50 |
-
logger.error(f"Error analyzing chunk for context: {e}")
|
| 51 |
-
return f"Code section analysis unavailable: {e}"
|
| 52 |
-
|
| 53 |
-
def create_repo_context_summary(repo_content: str, repo_id: str) -> str:
|
| 54 |
-
"""
|
| 55 |
-
Create a comprehensive context summary by analyzing the repository in chunks.
|
| 56 |
-
Returns a detailed summary that the chatbot can use to answer questions.
|
| 57 |
-
"""
|
| 58 |
-
try:
|
| 59 |
-
lines = repo_content.split('\n')
|
| 60 |
-
chunk_size = 1200 # Increased for better context and fewer API calls
|
| 61 |
-
chunk_summaries = []
|
| 62 |
-
|
| 63 |
-
logger.info(f"Analyzing repository {repo_id} in chunks for chatbot context")
|
| 64 |
-
|
| 65 |
-
for i in range(0, len(lines), chunk_size):
|
| 66 |
-
chunk = '\n'.join(lines[i:i+chunk_size])
|
| 67 |
-
if chunk.strip(): # Only analyze non-empty chunks
|
| 68 |
-
summary = analyze_repo_chunk_for_context(chunk, repo_id)
|
| 69 |
-
chunk_summaries.append(f"=== Section {len(chunk_summaries) + 1} ===\n{summary}")
|
| 70 |
-
|
| 71 |
-
# Create final comprehensive summary
|
| 72 |
-
try:
|
| 73 |
-
from openai import OpenAI
|
| 74 |
-
client = OpenAI(api_key=os.getenv("modal_api"))
|
| 75 |
-
client.base_url = os.getenv("base_url")
|
| 76 |
-
|
| 77 |
-
final_prompt = f"""Based on the following section summaries of repository '{repo_id}', create a comprehensive overview that a chatbot can use to answer user questions.
|
| 78 |
-
|
| 79 |
-
Section Summaries:
|
| 80 |
-
{chr(10).join(chunk_summaries)}
|
| 81 |
-
|
| 82 |
-
Create a well-structured overview covering:
|
| 83 |
-
1. Repository Purpose & Main Functionality
|
| 84 |
-
2. Key Components & Architecture
|
| 85 |
-
3. Important Features & Capabilities
|
| 86 |
-
4. Technology Stack & Dependencies
|
| 87 |
-
5. Usage Patterns & Examples
|
| 88 |
-
|
| 89 |
-
Make this comprehensive but conversational - it will be used by a chatbot to answer user questions about the repository."""
|
| 90 |
-
|
| 91 |
-
response = client.chat.completions.create(
|
| 92 |
-
model="Orion-zhen/Qwen2.5-Coder-7B-Instruct-AWQ",
|
| 93 |
-
messages=[
|
| 94 |
-
{"role": "system", "content": "You are creating a comprehensive repository summary for a chatbot assistant."},
|
| 95 |
-
{"role": "user", "content": final_prompt}
|
| 96 |
-
],
|
| 97 |
-
max_tokens=1500, # Increased for more comprehensive summaries
|
| 98 |
-
temperature=0.3
|
| 99 |
-
)
|
| 100 |
-
|
| 101 |
-
final_summary = response.choices[0].message.content
|
| 102 |
-
|
| 103 |
-
# Combine everything for the chatbot context
|
| 104 |
-
full_context = f"""=== REPOSITORY ANALYSIS FOR {repo_id.upper()} ===
|
| 105 |
-
|
| 106 |
-
{final_summary}
|
| 107 |
-
|
| 108 |
-
=== DETAILED SECTION SUMMARIES ===
|
| 109 |
-
{chr(10).join(chunk_summaries)}"""
|
| 110 |
-
|
| 111 |
-
logger.info(f"Created comprehensive context summary for {repo_id}")
|
| 112 |
-
return full_context
|
| 113 |
-
|
| 114 |
-
except Exception as e:
|
| 115 |
-
logger.error(f"Error creating final summary: {e}")
|
| 116 |
-
# Fallback to just section summaries
|
| 117 |
-
return f"=== REPOSITORY ANALYSIS FOR {repo_id.upper()} ===\n\n" + '\n\n'.join(chunk_summaries)
|
| 118 |
-
|
| 119 |
-
except Exception as e:
|
| 120 |
-
logger.error(f"Error creating repo context summary: {e}")
|
| 121 |
-
return f"Repository analysis unavailable: {e}"
|
| 122 |
-
|
| 123 |
def create_repo_explorer_tab() -> Tuple[Dict[str, gr.components.Component], Dict[str, gr.State]]:
|
| 124 |
"""
|
| 125 |
Creates the Repo Explorer tab content and returns the component references and state variables.
|
|
@@ -198,41 +86,6 @@ def create_repo_explorer_tab() -> Tuple[Dict[str, gr.components.Component], Dict
|
|
| 198 |
|
| 199 |
return components, states
|
| 200 |
|
| 201 |
-
def handle_load_repository(repo_id: str) -> Tuple[str, str]:
|
| 202 |
-
"""Load a specific repository and prepare it for exploration with chunk-based analysis."""
|
| 203 |
-
if not repo_id.strip():
|
| 204 |
-
return "Status: Please enter a repository ID.", ""
|
| 205 |
-
|
| 206 |
-
try:
|
| 207 |
-
logger.info(f"Loading repository for exploration: {repo_id}")
|
| 208 |
-
|
| 209 |
-
# Download and process the repository
|
| 210 |
-
try:
|
| 211 |
-
download_filtered_space_files(repo_id, local_dir="repo_files", file_extensions=['.py', '.md', '.txt'])
|
| 212 |
-
combined_text_path = combine_repo_files_for_llm()
|
| 213 |
-
|
| 214 |
-
except Exception as e:
|
| 215 |
-
logger.error(f"Error downloading repository {repo_id}: {e}")
|
| 216 |
-
error_status = f"❌ Error downloading repository: {e}"
|
| 217 |
-
return error_status, ""
|
| 218 |
-
|
| 219 |
-
with open(combined_text_path, "r", encoding="utf-8") as f:
|
| 220 |
-
repo_content = f.read()
|
| 221 |
-
|
| 222 |
-
status = f"✅ Repository '{repo_id}' loaded successfully!\n📁 Files processed and ready for exploration.\n🔄 Analyzing repository in chunks for comprehensive context...\n💬 You can now ask questions about this repository."
|
| 223 |
-
|
| 224 |
-
# Create comprehensive context summary using chunk analysis
|
| 225 |
-
logger.info(f"Creating context summary for {repo_id}")
|
| 226 |
-
context_summary = create_repo_context_summary(repo_content, repo_id)
|
| 227 |
-
|
| 228 |
-
logger.info(f"Repository {repo_id} loaded and analyzed successfully for exploration")
|
| 229 |
-
return status, context_summary
|
| 230 |
-
|
| 231 |
-
except Exception as e:
|
| 232 |
-
logger.error(f"Error loading repository {repo_id}: {e}")
|
| 233 |
-
error_status = f"❌ Error loading repository: {e}"
|
| 234 |
-
return error_status, ""
|
| 235 |
-
|
| 236 |
def handle_repo_user_message(user_message: str, history: List[Dict[str, str]], repo_context_summary: str, repo_id: str) -> Tuple[List[Dict[str, str]], str]:
|
| 237 |
"""Handle user messages in the repo-specific chatbot."""
|
| 238 |
if not repo_context_summary.strip():
|
|
|
|
| 2 |
import os
|
| 3 |
import logging
|
| 4 |
from typing import List, Dict, Tuple
|
| 5 |
+
from analyzer import combine_repo_files_for_llm, handle_load_repository
|
| 6 |
from hf_utils import download_filtered_space_files
|
| 7 |
|
| 8 |
# Setup logger
|
| 9 |
logger = logging.getLogger(__name__)
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
def create_repo_explorer_tab() -> Tuple[Dict[str, gr.components.Component], Dict[str, gr.State]]:
|
| 12 |
"""
|
| 13 |
Creates the Repo Explorer tab content and returns the component references and state variables.
|
|
|
|
| 86 |
|
| 87 |
return components, states
|
| 88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
def handle_repo_user_message(user_message: str, history: List[Dict[str, str]], repo_context_summary: str, repo_id: str) -> Tuple[List[Dict[str, str]], str]:
|
| 90 |
"""Handle user messages in the repo-specific chatbot."""
|
| 91 |
if not repo_context_summary.strip():
|