naman1102's picture
Update app.py
13e3fe4
raw
history blame
14 kB
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from langgraph.prebuilt import ToolNode, create_react_agent
from tools import web_search, parse_excel, ocr_image
# from typing import Any, Dict
# from typing import TypedDict, Annotated
from langchain_openai import ChatOpenAI
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langchain.schema import HumanMessage, AIMessage, SystemMessage
# Create a ToolNode that knows about your web_search function
import json
def parse_tool_json(text: str) -> dict | None:
"""
Given a string like '{"tool":"web_search","query":"..."}'
or '"{\"tool\":\"web_search\",\"query\":\"...\"}"', return
the parsed dict. Otherwise, return None.
"""
t = text.strip()
# If it’s wrapped in single or double quotes, remove them:
if (t.startswith('"') and t.endswith('"')) or (t.startswith("'") and t.endswith("'")):
t = t[1:-1]
try:
obj = json.loads(t)
if isinstance(obj, dict) and "tool" in obj:
return obj
except Exception:
return None
return None
# (Keep Constan
#
#
# ts as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
llm = ChatOpenAI(model_name="gpt-4.1-mini", temperature=0.0)
tool_node = ToolNode([ocr_image, parse_excel, web_search])
agent = create_react_agent(model=llm, tools=tool_node)
# 2) Build a two‐edge graph:
graph = StateGraph(dict)
graph.add_node("agent", agent)
graph.add_edge(START, "agent")
graph.add_edge("agent", END)
compiled_graph = graph.compile()
def respond_to_input(user_input: str) -> str:
# 1) Build a SystemMessage that insists on bare JSON if calling a tool
system_msg = SystemMessage(
content=(
"You are an assistant with access to exactly these tools:\n"
" 1) web_search(query:str)\n"
" 2) parse_excel(path:str,sheet_name:str)\n"
" 3) ocr_image(path:str)\n\n"
"⚠️ **MANDATORY** ⚠️: If (and only if) you need to call a tool, your entire response MUST be exactly ONE JSON OBJECT and NOTHING ELSE. \n"
"For example, if you want to call web_search, you must respond with exactly:\n"
"```json\n"
"{\"tool\":\"web_search\",\"query\":\"Mercedes Sosa studio albums 2000-2009\"}\n"
"```\n"
"That JSON string must start at the very first character of your response and end at the very last character—"
"no surrounding quotes, no markdown fences, no explanatory text. \n\n"
"If you do NOT need to call any tool, then you must respond with your final answer as plain text (no JSON)."
)
)
# 2) Initialize state with just that SystemMessage
initial_state = {
"messages": [
system_msg,
HumanMessage(content=user_input)
]
}
# C) FIRST PASS: invoke with only initial_state (no second argument!)
try:
first_pass = compiled_graph.invoke(initial_state)
except Exception as e:
print("‼️ ERROR during first invoke:", repr(e))
# If you want extra debug, you can try printing first_pass["messages"] if defined
return "" # return fallback
# D) Log the AIMessage(s) from first_pass
print("===== AGENT MESSAGES (First Pass) =====")
for idx, msg in enumerate(first_pass["messages"]):
if isinstance(msg, AIMessage):
print(f"[AIMessage #{idx}]: {repr(msg.content)}")
print("=========================================")
# E) Find the very last AIMessage content
last_msg = None
for msg in reversed(first_pass["messages"]):
if isinstance(msg, AIMessage):
last_msg = msg.content
break
# F) Attempt to parse last_msg as JSON for a tool call
tool_dict = parse_tool_json(last_msg or "")
if tool_dict:
# G) If valid JSON, run the tool
print(">> Parsed tool call:", tool_dict)
tool_result = tool_node.run(tool_dict)
print(f">> Tool '{tool_dict['tool']}' returned: {repr(tool_result)}")
# H) SECOND PASS: feed the tool’s output back in as an AIMessage,
# with no new human input
continuation_state = {
"messages": [
*first_pass["messages"],
AIMessage(content=tool_result)
]
}
try:
second_pass = compiled_graph.invoke(continuation_state)
except Exception as e2:
print("‼️ ERROR during second invoke:", repr(e2))
return ""
# I) Log second_pass AIMessage(s)
print("===== AGENT MESSAGES (Second Pass) =====")
for idx, msg in enumerate(second_pass["messages"]):
if isinstance(msg, AIMessage):
print(f"[AIMessage2 #{idx}]: {repr(msg.content)}")
print("=========================================")
# J) Return the final AIMessage from second_pass
for msg in reversed(second_pass["messages"]):
if isinstance(msg, AIMessage):
return msg.content or ""
return ""
else:
# K) If not JSON → treat last_msg as plain text final answer
return last_msg or ""
class BasicAgent:
def __init__(self):
print("BasicAgent initialized.")
def __call__(self, question: str) -> str:
# print(f"Agent received question (first 50 chars): {question[:50]}...")
# fixed_answer = "This is a default answer."
# print(f"Agent returning fixed answer: {fixed_answer}")
return respond_to_input(question)
# return fixed_answer
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
# print("LangGraph version:", langgraph.__version__)
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
# import langgraph
# print("▶︎ LangGraph version:", langgraph.__version__)
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)