Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import requests | |
import inspect | |
import pandas as pd | |
from langgraph.prebuilt import ToolNode, create_react_agent | |
from tools import web_search, parse_excel, ocr_image | |
# from typing import Any, Dict | |
# from typing import TypedDict, Annotated | |
from langchain_openai import ChatOpenAI | |
from langgraph.graph import StateGraph, START, END | |
from langgraph.graph.message import add_messages | |
from langchain.schema import HumanMessage, AIMessage, SystemMessage | |
# Create a ToolNode that knows about your web_search function | |
import json | |
def parse_tool_json(text: str) -> dict | None: | |
""" | |
Given a string like '{"tool":"web_search","query":"..."}' | |
or '"{\"tool\":\"web_search\",\"query\":\"...\"}"', return | |
the parsed dict. Otherwise, return None. | |
""" | |
t = text.strip() | |
# If it’s wrapped in single or double quotes, remove them: | |
if (t.startswith('"') and t.endswith('"')) or (t.startswith("'") and t.endswith("'")): | |
t = t[1:-1] | |
try: | |
obj = json.loads(t) | |
if isinstance(obj, dict) and "tool" in obj: | |
return obj | |
except Exception: | |
return None | |
return None | |
# (Keep Constan | |
# | |
# | |
# ts as is) | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
llm = ChatOpenAI(model_name="gpt-4.1-mini", temperature=0.0) | |
tool_node = ToolNode([ocr_image, parse_excel, web_search]) | |
agent = create_react_agent(model=llm, tools=tool_node) | |
# 2) Build a two‐edge graph: | |
graph = StateGraph(dict) | |
graph.add_node("agent", agent) | |
graph.add_edge(START, "agent") | |
graph.add_edge("agent", END) | |
compiled_graph = graph.compile() | |
def respond_to_input(user_input: str) -> str: | |
# 1) Build a SystemMessage that insists on bare JSON if calling a tool | |
system_msg = SystemMessage( | |
content=( | |
"You are an assistant with access to exactly these tools:\n" | |
" 1) web_search(query:str)\n" | |
" 2) parse_excel(path:str,sheet_name:str)\n" | |
" 3) ocr_image(path:str)\n\n" | |
"⚠️ **MANDATORY** ⚠️: If (and only if) you need to call a tool, your entire response MUST be exactly ONE JSON OBJECT and NOTHING ELSE. \n" | |
"For example, if you want to call web_search, you must respond with exactly:\n" | |
"```json\n" | |
"{\"tool\":\"web_search\",\"query\":\"Mercedes Sosa studio albums 2000-2009\"}\n" | |
"```\n" | |
"That JSON string must start at the very first character of your response and end at the very last character—" | |
"no surrounding quotes, no markdown fences, no explanatory text. \n\n" | |
"If you do NOT need to call any tool, then you must respond with your final answer as plain text (no JSON)." | |
) | |
) | |
# 2) Initialize state with just that SystemMessage | |
initial_state = { | |
"messages": [ | |
system_msg, | |
HumanMessage(content=user_input) | |
] | |
} | |
# C) FIRST PASS: invoke with only initial_state (no second argument!) | |
try: | |
first_pass = compiled_graph.invoke(initial_state) | |
except Exception as e: | |
print("‼️ ERROR during first invoke:", repr(e)) | |
# If you want extra debug, you can try printing first_pass["messages"] if defined | |
return "" # return fallback | |
# D) Log the AIMessage(s) from first_pass | |
print("===== AGENT MESSAGES (First Pass) =====") | |
for idx, msg in enumerate(first_pass["messages"]): | |
if isinstance(msg, AIMessage): | |
print(f"[AIMessage #{idx}]: {repr(msg.content)}") | |
print("=========================================") | |
# E) Find the very last AIMessage content | |
last_msg = None | |
for msg in reversed(first_pass["messages"]): | |
if isinstance(msg, AIMessage): | |
last_msg = msg.content | |
break | |
# F) Attempt to parse last_msg as JSON for a tool call | |
tool_dict = parse_tool_json(last_msg or "") | |
if tool_dict: | |
# G) If valid JSON, run the tool | |
print(">> Parsed tool call:", tool_dict) | |
tool_result = tool_node.run(tool_dict) | |
print(f">> Tool '{tool_dict['tool']}' returned: {repr(tool_result)}") | |
# H) SECOND PASS: feed the tool’s output back in as an AIMessage, | |
# with no new human input | |
continuation_state = { | |
"messages": [ | |
*first_pass["messages"], | |
AIMessage(content=tool_result) | |
] | |
} | |
try: | |
second_pass = compiled_graph.invoke(continuation_state) | |
except Exception as e2: | |
print("‼️ ERROR during second invoke:", repr(e2)) | |
return "" | |
# I) Log second_pass AIMessage(s) | |
print("===== AGENT MESSAGES (Second Pass) =====") | |
for idx, msg in enumerate(second_pass["messages"]): | |
if isinstance(msg, AIMessage): | |
print(f"[AIMessage2 #{idx}]: {repr(msg.content)}") | |
print("=========================================") | |
# J) Return the final AIMessage from second_pass | |
for msg in reversed(second_pass["messages"]): | |
if isinstance(msg, AIMessage): | |
return msg.content or "" | |
return "" | |
else: | |
# K) If not JSON → treat last_msg as plain text final answer | |
return last_msg or "" | |
class BasicAgent: | |
def __init__(self): | |
print("BasicAgent initialized.") | |
def __call__(self, question: str) -> str: | |
# print(f"Agent received question (first 50 chars): {question[:50]}...") | |
# fixed_answer = "This is a default answer." | |
# print(f"Agent returning fixed answer: {fixed_answer}") | |
return respond_to_input(question) | |
# return fixed_answer | |
def run_and_submit_all( profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the BasicAgent on them, submits all answers, | |
and displays the results. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
if profile: | |
username= f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent ( modify this part to create your agent) | |
try: | |
agent = BasicAgent() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
submitted_answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
--- | |
**Disclaimers:** | |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
# Removed max_rows=10 from DataFrame constructor | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
# print("LangGraph version:", langgraph.__version__) | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
# import langgraph | |
# print("▶︎ LangGraph version:", langgraph.__version__) | |
if space_host_startup: | |
print(f"✅ SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: # Print repo URLs if SPACE_ID is found | |
print(f"✅ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) |