Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import requests | |
import inspect | |
import pandas as pd | |
from langgraph.prebuilt import ToolNode | |
from tools import web_search, parse_excel, ocr_image | |
# import langgraph | |
from typing import TypedDict, Annotated | |
from langchain_openai import ChatOpenAI | |
from langgraph.graph import StateGraph, START, END | |
from langgraph.graph.message import add_messages | |
import langgraph | |
import importlib.metadata | |
try: | |
lg_ver = importlib.metadata.version("langgraph") | |
print("▶︎ LangGraph version:", lg_ver) | |
except importlib.metadata.PackageNotFoundError: | |
print("LangGraph is not installed.") | |
# Create a ToolNode that knows about your web_search function | |
# (Keep Constants as is) | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# --- Basic Agent Definition --- | |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------ | |
class AgentState(TypedDict): | |
# We store the full chat history as a list of strings. | |
messages: Annotated[list[str], add_messages] | |
# If the agent requests a tool, it will fill in: | |
tool_request: dict | None | |
# Whenever a tool runs, its result goes here: | |
tool_result: str | None | |
# 2) Wrap ChatOpenAI in a function whose signature is (state, user_input) → new_state | |
llm = ChatOpenAI(model_name="gpt-4.1-mini") | |
def agent_node(state: AgentState, user_input: str) -> AgentState: | |
""" | |
This function replaces raw ChatOpenAI. It must accept (state, user_input) | |
and return a new AgentState dict. | |
""" | |
# 2.a) Grab prior chat history (empty list on first turn) | |
prior_msgs = state.get("messages", []) | |
# 2.b) Append the new user_input | |
chat_history = prior_msgs + [f"USER: {user_input}"] | |
# 2.c) Ask the LLM for a response | |
llm_output = llm(chat_history).content | |
# 2.d) Check if the LLM output is valid Python dict literal indicating a tool call. | |
# If it is, parse it and stash in state["tool_request"]. Otherwise, no tool. | |
tool_req = None | |
try: | |
parsed = eval(llm_output) | |
if isinstance(parsed, dict) and parsed.get("tool"): | |
tool_req = parsed | |
except Exception: | |
tool_req = None | |
# 2.e) Construct the new state: | |
return { | |
"messages": chat_history + [f"ASSISTANT: {llm_output}"], | |
"tool_request": tool_req, | |
"tool_result": None # will be filled by the tool_node if invoked | |
} | |
# 3) Create a ToolNode for all three tools, then wrap it in a function | |
# whose signature is also (state, tool_request) → new_state. | |
underlying_tool_node = ToolNode([ocr_image, parse_excel, web_search]) | |
def tool_node(state: AgentState, tool_request: dict) -> AgentState: | |
""" | |
The graph will only call this when tool_request is a dict like | |
{"tool": "...", "path": "...", ...} | |
Use the underlying ToolNode to run it and store the result. | |
""" | |
# 3.a) Run the actual ToolNode on that dict: | |
result_text = underlying_tool_node.run(tool_request) | |
# 3.b) Update state.messages to note the tool’s output, | |
# and clear tool_request so we don’t loop. | |
return { | |
"messages": [f"TOOL ({tool_request['tool']}): {result_text}"], | |
"tool_request": None, | |
"tool_result": result_text | |
} | |
# 4) Build and register nodes exactly as in the tutorial | |
graph = StateGraph(AgentState) | |
graph.add_node("agent", agent_node) | |
graph.add_node("tools", tool_node) | |
# 5) Simple START → “agent” edge (no third argument needed) | |
graph.add_edge(START, "agent") | |
# 6) Simple “tools” → “agent” edge (again, no third argument) | |
graph.add_edge("tools", "agent") | |
# 7) Conditional branching out of “agent,” exactly like the tutorial | |
def route_agent(state: AgentState, agent_out): | |
""" | |
When the LLM (agent_node) runs, it returns an AgentState where | |
- state["tool_request"] is either a dict (if a tool was asked) or None. | |
- state["tool_result"] is always None on entry to agent_node. | |
route_agent must look at that returned state (called agent_out) | |
and decide: | |
• If agent_out["tool_request"] is not None, go to "tools". | |
• Otherwise, terminate (go to END). | |
""" | |
if agent_out.get("tool_request") is not None: | |
return "tools" | |
return "final" | |
graph.add_conditional_edges( | |
"agent", # source | |
route_agent, # routing function (signature: (state, agent_out) → str key) | |
{ | |
"tools": "tools", # if route_agent(...) == "tools", transition to node "tools" | |
"final": END # if route_agent(...) == "final", stop execution | |
} | |
) | |
# 8) Compile the graph (now graph.run(...) will work) | |
compiled_graph = graph.compile() | |
# 9) Define respond_to_input so that Gradio (and the Hugging Face submission) can call it | |
def respond_to_input(user_input: str) -> str: | |
# Start with an empty state | |
initial_state: AgentState = { | |
"messages": [], | |
"tool_request": None, | |
"tool_result": None | |
} | |
# Use .run(initial_state, user_input) in v0.3.x | |
final_state = compiled_graph.invoke(initial_state, user_input) | |
# The “final” on END means agent_out has no more tool calls and finished reasoning | |
# We return the last assistant message from state["messages"]: | |
return final_state["messages"][-1].replace("ASSISTANT: ", "") | |
class BasicAgent: | |
def __init__(self): | |
print("BasicAgent initialized.") | |
def __call__(self, question: str) -> str: | |
# print(f"Agent received question (first 50 chars): {question[:50]}...") | |
# fixed_answer = "This is a default answer." | |
# print(f"Agent returning fixed answer: {fixed_answer}") | |
return respond_to_input(question) | |
# return fixed_answer | |
def run_and_submit_all( profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the BasicAgent on them, submits all answers, | |
and displays the results. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
if profile: | |
username= f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent ( modify this part to create your agent) | |
try: | |
agent = BasicAgent() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
submitted_answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
--- | |
**Disclaimers:** | |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
# Removed max_rows=10 from DataFrame constructor | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
# print("LangGraph version:", langgraph.__version__) | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
# import langgraph | |
# print("▶︎ LangGraph version:", langgraph.__version__) | |
if space_host_startup: | |
print(f"✅ SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: # Print repo URLs if SPACE_ID is found | |
print(f"✅ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) |