naman1102's picture
audio
7fb0070
raw
history blame
16.1 kB
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from langgraph.prebuilt import ToolNode
# from typing import Any, Dict
# from typing import TypedDict, Annotated
from langchain_openai import ChatOpenAI
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langchain.schema import HumanMessage, SystemMessage, AIMessage
# Create a ToolNode that knows about your web_search function
import json
from state import AgentState
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
from tools import ocr_image_tool, parse_excel_tool, web_search_tool, run_tools, audio_transcriber_tool
tool_node = ToolNode([ocr_image_tool, parse_excel_tool, web_search_tool, audio_transcriber_tool])
llm = ChatOpenAI(model_name="gpt-4.1-mini", temperature=0.0)
# agent = create_react_agent(model=llm, tools=tool_node)
# ─── 2) Revised plan_node ───
def plan_node(state: AgentState) -> AgentState:
"""
Look at the last HumanMessage in state['messages'] to get user_input.
Then call llm with exactly [SystemMessage, HumanMessage(user_input)] so
we never feed in a list lacking an AIMessage internally.
"""
# 1) Find the last HumanMessage from prior history
prior_msgs = state.get("messages", [])
user_input = ""
for msg in reversed(prior_msgs):
if isinstance(msg, HumanMessage):
user_input = msg.content
break
# 2) Build a fresh SystemMessage explaining exactly one dict key
system_msg = SystemMessage(
content=(
"You are an agent that decides whether to call a tool or answer the user directly. "
"The user's question is below. If the answer can be given directly, return {'final_answer': <your answer>}."
"If you need to call a tool, set exactly one key from the following in a Python dict: "
" • web_search_query: <search terms>\n"
" • ocr_path: <path to an image file>\n"
" • excel_path: <path to a .xlsx file>, excel_sheet_name: <sheet name>.\n"
" • audio_path: <path to an audio file>\n"
"Do not include any extra text or markdown—only return a valid Python dict literal."
)
)
human_msg = HumanMessage(content=user_input)
# 3) Call the LLM with a brand‐new list [system_msg, human_msg]
llm_response = llm([system_msg, human_msg])
llm_out = llm_response.content.strip()
# 4) Always append the LLM output as an AIMessage
ai_msg = AIMessage(content=llm_out)
new_msgs = prior_msgs.copy() + [ai_msg]
try:
parsed = eval(llm_out, {}, {})
if isinstance(parsed, dict):
partial: AgentState = {"messages": new_msgs}
allowed = {
"web_search_query",
"ocr_path",
"excel_path",
"excel_sheet_name",
"audio_path",
"final_answer"
}
for k, v in parsed.items():
if k in allowed:
partial[k] = v
return partial
except Exception:
pass
# 5) Fallback
return {
"messages": new_msgs,
"final_answer": "Sorry, I could not parse your intent."
}
# ─── 3) Revised finalize_node ───
def finalize_node(state: AgentState) -> AgentState:
# If plan_node already provided a final answer, skip LLM
if state.get("final_answer") is not None:
return {"final_answer": state["final_answer"]}
# Re-extract the last user question from messages
question = ""
for msg in reversed(state.get("messages", [])):
if isinstance(msg, HumanMessage):
question = msg.content
break
# Build a combined context
combined = f"USER_QUESTION: {question}\n"
if sr := state.get("web_search_result"):
combined += f"WEB_SEARCH_RESULT: {sr}\n"
if orc := state.get("ocr_result"):
combined += f"OCR_RESULT: {orc}\n"
if exr := state.get("excel_result"):
combined += f"EXCEL_RESULT: {exr}\n"
# Check for both possible transcript keys
audio_transcript = state.get("audio_transcript") or state.get("transcript")
if audio_transcript:
combined += f"AUDIO_TRANSCRIPT: {audio_transcript}\n"
combined += "Based on the above, provide ONLY the final answer. Do not include any explanation or extra text."
llm_response = llm([SystemMessage(content=combined)])
return {"final_answer": llm_response.content.strip()}
# ─── 4) Wrap tools in a ToolNode ───
tool_node = ToolNode([web_search_tool, ocr_image_tool, parse_excel_tool])
# Add a node to store the previous state
def store_prev_state(state: AgentState) -> AgentState:
return {**state, "prev_state": state.copy()}
def merge_tool_output(state: AgentState) -> AgentState:
prev_state = state.get("prev_state", {})
merged = {**prev_state, **state}
merged.pop("prev_state", None)
return merged
# ─── 5) Build the graph ───
graph = StateGraph(AgentState)
# 5.a) Register nodes
graph.add_node("plan", plan_node)
graph.add_node("store_prev_state", store_prev_state)
graph.add_node("tools", tool_node)
graph.add_node("merge_tool_output", merge_tool_output)
graph.add_node("finalize", finalize_node)
# 5.b) Wire START → plan
graph.add_edge(START, "plan")
# 5.c) plan → conditional: if any tool key was set, go to "tools"; otherwise "finalize"
def route_plan(plan_out: AgentState) -> str:
if plan_out.get("web_search_query") or plan_out.get("ocr_path") or plan_out.get("excel_path"):
return "tools"
return "finalize"
graph.add_conditional_edges(
"plan",
route_plan,
{"tools": "store_prev_state", "finalize": "finalize"}
)
# 5.d) store_prev_state → tools
graph.add_edge("store_prev_state", "tools")
# 5.e) tools → merge_tool_output
graph.add_edge("tools", "merge_tool_output")
# 5.f) merge_tool_output → finalize
graph.add_edge("merge_tool_output", "finalize")
# 5.g) finalize → END
graph.add_edge("finalize", END)
compiled_graph = graph.compile()
# ─── 6) respond_to_input ───
def respond_to_input(user_input: str) -> str:
"""
Seed state['messages'] with a SystemMessage (tools description) + HumanMessage(user_input).
Then invoke the graph; return the final_answer from the resulting state.
"""
system_msg = SystemMessage(
content=(
"You are an agent that decides whether to call a tool or answer the user directly. "
"The user's question is below. If the answer can be given directly, return {'final_answer': <your answer>}."
"If you need to call a tool, set exactly one key from the following in a Python dict: "
" • web_search_query: <search terms>\n"
" • ocr_path: <path to an image file>\n"
" • excel_path: <path to a .xlsx file>, excel_sheet_name: <sheet name>.\n"
" • audio_path: <path to an audio file>\n"
"Do not include any extra text or markdown—only return a valid Python dict literal."
)
)
human_msg = HumanMessage(content=user_input)
initial_state: AgentState = {"messages": [system_msg, human_msg]}
final_state = compiled_graph.invoke(initial_state)
return final_state.get("final_answer", "Error: No final answer generated.")
class BasicAgent:
def __init__(self):
print("BasicAgent initialized.")
def __call__(self, question: str) -> str:
# print(f"Agent received question (first 50 chars): {question[:50]}...")
# fixed_answer = "This is a default answer."
# print(f"Agent returning fixed answer: {fixed_answer}")
return respond_to_input(question)
# return fixed_answer
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
# print("LangGraph version:", langgraph.__version__)
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
# import langgraph
# print("▶︎ LangGraph version:", langgraph.__version__)
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)