Spaces:
Sleeping
Sleeping
from __future__ import annotations | |
import os | |
import gradio as gr | |
import requests | |
import pandas as pd | |
from langchain_openai import ChatOpenAI | |
from langgraph.graph import StateGraph, START, END | |
from langchain.schema import HumanMessage, SystemMessage, AIMessage | |
# Create a ToolNode that knows about your web_search function | |
import json | |
from state import AgentState | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
import json | |
from typing import Any, Dict, List, Optional | |
# βββββββββββββββββββββββββββ External tools ββββββββββββββββββββββββββββββ | |
from tools import ( | |
wikipedia_search_tool, | |
ocr_image_tool, | |
audio_transcriber_tool, | |
parse_excel_tool | |
) | |
# βββββββββββββββββββββββββββ Configuration βββββββββββββββββββββββββββββββ | |
LLM = ChatOpenAI(model_name="gpt-4o-mini", temperature=0.0) | |
MAX_TOOL_CALLS = 5 | |
# βββββββββββββββββββββββββββ Helper utilities ββββββββββββββββββββββββββββ | |
def safe_json(text: str) -> Optional[Dict[str, Any]]: | |
try: | |
obj = json.loads(text.strip()) | |
return obj if isinstance(obj, dict) else None | |
except json.JSONDecodeError: | |
return None | |
# def brief(d: Dict[str, Any]) -> str: | |
# for k in ("wiki_result", "ocr_result", "transcript"): | |
# if k in d: | |
# return f"{k}: {str(d[k])[:160].replace('\n', ' ')}β¦" | |
# return "(no output)" | |
# βββββββββββββββββββββββββββ Agent state β¬ βββββββββββββββββββββββββββββββ | |
# βββββββββββββββββββββββββββββ Nodes β¬ βββββββββββββββββββββββββββββββββββ | |
def tool_selector(state: AgentState) -> AgentState: | |
"""Ask the LLM what to do next (wiki / ocr / audio / excel / final).""" | |
if state.tool_calls >= MAX_TOOL_CALLS: | |
state.add(SystemMessage(content="You have reached the maximum number of tool calls. Use the already gathered information to answer the question.")) | |
state.next_action = "final" | |
return state | |
prompt = SystemMessage( | |
content=( | |
"Reply with ONE JSON only (no markdown). Choices:\n" | |
" {'action':'wiki','query':'β¦'}\n" | |
" {'action':'ocr'}\n" | |
" {'action':'audio'}\n" | |
" {'action':'excel'}\n" | |
" {'action':'final'}\n" | |
) | |
) | |
raw = LLM(state.messages + [prompt]).content.strip() | |
state.add(AIMessage(content=raw)) | |
parsed = safe_json(raw) | |
if not parsed or "action" not in parsed: | |
state.next_action = "final" | |
return state | |
state.next_action = parsed["action"] | |
state.query = parsed.get("query") | |
return state | |
# ------------- tool adapters ------------- | |
def wiki_tool(state: AgentState) -> AgentState: | |
out = wikipedia_search_tool({"wiki_query": state.query or ""}) | |
state.tool_calls += 1 | |
state.add(SystemMessage(content=f"WIKI_TOOL_OUT: {out}")) | |
state.next_action = None | |
return state | |
def ocr_tool(state: AgentState) -> AgentState: | |
out = ocr_image_tool({"task_id": state.task_id, "ocr_path": ""}) | |
state.tool_calls += 1 | |
state.add(SystemMessage(content=f"OCR_TOOL_OUT: {out}")) | |
state.next_action = None | |
return state | |
def audio_tool(state: AgentState) -> AgentState: | |
out = audio_transcriber_tool({"task_id": state.task_id, "audio_path": ""}) | |
state.tool_calls += 1 | |
state.add(SystemMessage(content=f"AUDIO_TOOL_OUT: {out}")) | |
state.next_action = None | |
return state | |
def excel_tool(state: AgentState) -> AgentState: | |
result = parse_excel_tool({ | |
"task_id": state.task_id, | |
"excel_sheet_name": state.sheet or "" | |
}) | |
out = {"excel_result": result} | |
state.tool_calls += 1 | |
state.add(SystemMessage(content=f"EXCEL_TOOL_OUT: {out}")) | |
state.next_action = None | |
return state | |
# ------------- final answer ------------- | |
def final_node(state: AgentState) -> AgentState: | |
wrap = SystemMessage( | |
content="Using everything so far, reply ONLY with {'final_answer':'β¦'}. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string." | |
) | |
raw = LLM(state.messages + [wrap]).content.strip() | |
state.add(AIMessage(content=raw)) | |
parsed = safe_json(raw) | |
state.final_answer = parsed.get("final_answer") if parsed else "Unable to parse final answer." | |
return state | |
# βββββββββββββββββββββββββββ Graph wiring βββββββββββββββββββββββββββββββ | |
graph = StateGraph(AgentState) | |
# Register nodes | |
for name, fn in [ | |
("tool_selector", tool_selector), | |
("wiki_tool", wiki_tool), | |
("ocr_tool", ocr_tool), | |
("audio_tool", audio_tool), | |
("excel_tool", excel_tool), | |
("final_node", final_node), | |
]: | |
graph.add_node(name, fn) | |
# Edges | |
graph.add_edge(START, "tool_selector") | |
def dispatch(state: AgentState) -> str: | |
return { | |
"wiki": "wiki_tool", | |
"ocr": "ocr_tool", | |
"audio": "audio_tool", | |
"excel": "excel_tool", | |
"final": "final_node", | |
}.get(state.next_action, "final_node") | |
graph.add_conditional_edges( | |
"tool_selector", | |
dispatch, | |
{ | |
"wiki_tool": "wiki_tool", | |
"ocr_tool": "ocr_tool", | |
"audio_tool": "audio_tool", | |
"excel_tool": "excel_tool", | |
"final_node": "final_node", | |
}, | |
) | |
# tools loop back to selector | |
for tool_name in ("wiki_tool", "ocr_tool", "audio_tool", "excel_tool"): | |
graph.add_edge(tool_name, "tool_selector") | |
# final_answer β END | |
graph.add_edge("final_node", END) | |
compiled_graph = graph.compile() | |
# βββββββββββββββββββββββββββ Public API ββββββββββββββββββββββββββββββββ | |
def answer(question: str, task_id: Optional[str] = None) -> str: | |
state = AgentState(user_question=question, task_id=task_id) | |
state.add(SystemMessage(content="You are a helpful assistant.")) | |
state.add(HumanMessage(content=question)) | |
compiled_graph.invoke(state) | |
return state.final_answer or "No answer." | |
class BasicAgent: | |
def __init__(self): | |
print("BasicAgent initialized.") | |
def __call__(self, question: str, task_id) -> str: | |
# print(f"Agent received question (first 50 chars): {question[:50]}...") | |
# fixed_answer = "This is a default answer." | |
# print(f"Agent returning fixed answer: {fixed_answer}") | |
print() | |
print() | |
print() | |
print() | |
print(f"Agent received question: {question}") | |
print() | |
return answer(question, task_id) | |
# return fixed_answer | |
def run_and_submit_all( profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the BasicAgent on them, submits all answers, | |
and displays the results. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
if profile: | |
username= f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent ( modify this part to create your agent) | |
try: | |
agent = BasicAgent() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
submitted_answer = agent(question_text, task_id) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
--- | |
**Disclaimers:** | |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
# Removed max_rows=10 from DataFrame constructor | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
# print("LangGraph version:", langgraph.__version__) | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
# import langgraph | |
# print("βΆοΈ LangGraph version:", langgraph.__version__) | |
if space_host_startup: | |
print(f"β SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("βΉοΈ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: # Print repo URLs if SPACE_ID is found | |
print(f"β SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("βΉοΈ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) |