Spaces:
Sleeping
Sleeping
React_graph
Browse files
agent.py
CHANGED
@@ -6,19 +6,19 @@ from langchain.schema import HumanMessage, SystemMessage, AIMessage
|
|
6 |
from state import AgentState
|
7 |
from typing import Any, Dict, List, Optional
|
8 |
import json
|
9 |
-
|
10 |
|
11 |
# βββββββββββββββββββββββββββ External tools ββββββββββββββββββββββββββββββ
|
12 |
from tools import (
|
13 |
wikipedia_search_tool,
|
14 |
-
|
15 |
audio_transcriber_tool,
|
16 |
-
|
17 |
analyze_code_tool
|
18 |
)
|
19 |
|
20 |
# βββββββββββββββββββββββββββ Configuration βββββββββββββββββββββββββββββββ
|
21 |
-
|
22 |
MAX_TOOL_CALLS = 5
|
23 |
|
24 |
# βββββββββββββββββββββββββββ Helper utilities ββββββββββββββββββββββββββββ
|
@@ -29,122 +29,21 @@ MAX_TOOL_CALLS = 5
|
|
29 |
|
30 |
# ------------- tool adapters -------------
|
31 |
|
32 |
-
def wiki_tool(state: AgentState) -> AgentState:
|
33 |
-
out = wikipedia_search_tool({"wiki_query": state.query or ""})
|
34 |
-
state.tool_calls += 1
|
35 |
-
state.add(SystemMessage(content=f"WIKI_TOOL_OUT: {out}"))
|
36 |
-
state.next_action = None
|
37 |
-
return state
|
38 |
-
|
39 |
-
|
40 |
-
def ocr_tool(state: AgentState) -> AgentState:
|
41 |
-
out = ocr_image_tool({"task_id": state.task_id, "ocr_path": ""})
|
42 |
-
state.tool_calls += 1
|
43 |
-
state.add(SystemMessage(content=f"OCR_TOOL_OUT: {out}"))
|
44 |
-
state.next_action = None
|
45 |
-
return state
|
46 |
-
|
47 |
-
|
48 |
-
def audio_tool(state: AgentState) -> AgentState:
|
49 |
-
out = audio_transcriber_tool({"task_id": state.task_id, "audio_path": ""})
|
50 |
-
state.tool_calls += 1
|
51 |
-
state.add(SystemMessage(content=f"AUDIO_TOOL_OUT: {out}"))
|
52 |
-
state.next_action = None
|
53 |
-
return state
|
54 |
-
|
55 |
-
def excel_tool(state: AgentState) -> AgentState:
|
56 |
-
result = parse_excel_tool({
|
57 |
-
"task_id": state.task_id,
|
58 |
-
"excel_sheet_name": ""
|
59 |
-
})
|
60 |
-
out = {"excel_result": result}
|
61 |
-
state.tool_calls += 1
|
62 |
-
state.add(SystemMessage(content=f"EXCEL_TOOL_OUT: {out}"))
|
63 |
-
state.next_action = None
|
64 |
-
return state
|
65 |
-
|
66 |
-
def code_tool(state: AgentState) -> AgentState:
|
67 |
-
if state.snippet:
|
68 |
-
out = {"analysis": analyze_code_tool({
|
69 |
-
"task_id": state.task_id,
|
70 |
-
"snippet": state.snippet,
|
71 |
-
})}
|
72 |
-
else:
|
73 |
-
out = {"analysis": analyze_code_tool({
|
74 |
-
"task_id": state.task_id,
|
75 |
-
"snippet": ""
|
76 |
-
})}
|
77 |
-
state.tool_calls += 1
|
78 |
-
state.add(SystemMessage(content=f"CODE_TOOL_OUT: {out}"))
|
79 |
-
state.next_action = None
|
80 |
-
return state
|
81 |
-
|
82 |
-
# ------------- final answer -------------
|
83 |
-
|
84 |
-
def final_node(state: AgentState) -> AgentState:
|
85 |
-
print("reached final node")
|
86 |
-
wrap = SystemMessage(
|
87 |
-
content="Using everything so far, reply ONLY with {'final_answer':'β¦'}. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string. \n"
|
88 |
-
"reply **only** with "
|
89 |
-
"{\"final_answer\":\"β¦\"} (no markdown, no commentary)."
|
90 |
-
)
|
91 |
-
raw = LLM.invoke(state.messages + [wrap]).content.strip()
|
92 |
-
# print("raw : ", raw)
|
93 |
-
state.add(AIMessage(content=raw))
|
94 |
-
parsed = safe_json(raw)
|
95 |
-
# print("parsed : ", parsed, "type : ", type(parsed))
|
96 |
-
state.final_answer = parsed.get("final_answer") if parsed else "Unable to parse final answer."
|
97 |
-
# print("state.final_answer : ", state.final_answer)
|
98 |
-
return state
|
99 |
|
100 |
# βββββββββββββββββββββββββββ Graph wiring βββββββββββββββββββββββββββββββ
|
101 |
|
102 |
def build_graph():
|
103 |
graph = StateGraph(AgentState)
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
# Edges
|
118 |
-
graph.add_edge(START, "tool_selector")
|
119 |
-
|
120 |
-
def dispatch(state: AgentState) -> str:
|
121 |
-
return {
|
122 |
-
"wiki": "wiki_tool",
|
123 |
-
"ocr": "ocr_tool",
|
124 |
-
"audio": "audio_tool",
|
125 |
-
"excel": "excel_tool",
|
126 |
-
"code": "code_tool",
|
127 |
-
"final": "final_node",
|
128 |
-
}.get(state.next_action, "final_node")
|
129 |
-
|
130 |
-
graph.add_conditional_edges(
|
131 |
-
"tool_selector",
|
132 |
-
dispatch,
|
133 |
-
{
|
134 |
-
"wiki_tool": "wiki_tool",
|
135 |
-
"ocr_tool": "ocr_tool",
|
136 |
-
"audio_tool": "audio_tool",
|
137 |
-
"excel_tool": "excel_tool",
|
138 |
-
"code_tool": "code_tool",
|
139 |
-
"final_node": "final_node",
|
140 |
-
},
|
141 |
-
)
|
142 |
-
|
143 |
-
# tools loop back to selector
|
144 |
-
for tool_name in ("wiki_tool", "ocr_tool", "audio_tool", "excel_tool", "code_tool"):
|
145 |
-
graph.add_edge(tool_name, "tool_selector")
|
146 |
-
|
147 |
-
# final_answer β END
|
148 |
-
graph.add_edge("final_node", END)
|
149 |
-
|
150 |
-
return graph
|
|
|
6 |
from state import AgentState
|
7 |
from typing import Any, Dict, List, Optional
|
8 |
import json
|
9 |
+
from langgraph.prebuilt import create_react_agent
|
10 |
|
11 |
# βββββββββββββββββββββββββββ External tools ββββββββββββββββββββββββββββββ
|
12 |
from tools import (
|
13 |
wikipedia_search_tool,
|
14 |
+
arxiv_search_tool,
|
15 |
audio_transcriber_tool,
|
16 |
+
excel_tool,
|
17 |
analyze_code_tool
|
18 |
)
|
19 |
|
20 |
# βββββββββββββββββββββββββββ Configuration βββββββββββββββββββββββββββββββ
|
21 |
+
llm = ChatOpenAI(model_name="gpt-4.1-mini", temperature=0.3)
|
22 |
MAX_TOOL_CALLS = 5
|
23 |
|
24 |
# βββββββββββββββββββββββββββ Helper utilities ββββββββββββββββββββββββββββ
|
|
|
29 |
|
30 |
# ------------- tool adapters -------------
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
# βββββββββββββββββββββββββββ Graph wiring βββββββββββββββββββββββββββββββ
|
34 |
|
35 |
def build_graph():
|
36 |
graph = StateGraph(AgentState)
|
37 |
|
38 |
+
|
39 |
+
llm_tools = [
|
40 |
+
wikipedia_search_tool,
|
41 |
+
arxiv_search_tool,
|
42 |
+
audio_transcriber_tool,
|
43 |
+
excel_tool,
|
44 |
+
analyze_code_tool,
|
45 |
+
]
|
46 |
+
llm = llm.bind_tools(llm_tools)
|
47 |
+
agent = create_react_agent(llm, llm_tools)
|
48 |
+
|
49 |
+
return agent
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -12,12 +12,16 @@ from state import AgentState
|
|
12 |
# --- Constants ---
|
13 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
14 |
|
|
|
|
|
|
|
|
|
15 |
|
16 |
class BasicAgent:
|
17 |
def __init__(self):
|
18 |
print("BasicAgent initialized.")
|
19 |
graph = build_graph()
|
20 |
-
|
21 |
|
22 |
def __call__(self, question: str, task_id: Optional[str] = None) -> str:
|
23 |
"""Run the agent and return whatever FINAL_ANSWER the graph produces."""
|
@@ -25,12 +29,12 @@ class BasicAgent:
|
|
25 |
|
26 |
# The user_question argument for AgentState is the question.
|
27 |
init_state = AgentState(user_question=question, task_id=task_id)
|
28 |
-
init_state.add(SystemMessage(content=
|
29 |
init_state.add(HumanMessage(content=question))
|
30 |
|
31 |
# IMPORTANT: invoke() returns a **new** state instance (or an AddableValuesDict),
|
32 |
# not the object we pass in. Use the returned value to fetch final_answer.
|
33 |
-
out_state = self.
|
34 |
|
35 |
if isinstance(out_state, dict): # AddableValuesDict behaves like a dict
|
36 |
return out_state.get("final_answer", "No answer.")
|
|
|
12 |
# --- Constants ---
|
13 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
14 |
|
15 |
+
SYSTEM_PROMPT = """
|
16 |
+
You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
17 |
+
"""
|
18 |
+
|
19 |
|
20 |
class BasicAgent:
|
21 |
def __init__(self):
|
22 |
print("BasicAgent initialized.")
|
23 |
graph = build_graph()
|
24 |
+
|
25 |
|
26 |
def __call__(self, question: str, task_id: Optional[str] = None) -> str:
|
27 |
"""Run the agent and return whatever FINAL_ANSWER the graph produces."""
|
|
|
29 |
|
30 |
# The user_question argument for AgentState is the question.
|
31 |
init_state = AgentState(user_question=question, task_id=task_id)
|
32 |
+
init_state.add(SystemMessage(content=SYSTEM_PROMPT))
|
33 |
init_state.add(HumanMessage(content=question))
|
34 |
|
35 |
# IMPORTANT: invoke() returns a **new** state instance (or an AddableValuesDict),
|
36 |
# not the object we pass in. Use the returned value to fetch final_answer.
|
37 |
+
out_state = self.graph.invoke(init_state)
|
38 |
|
39 |
if isinstance(out_state, dict): # AddableValuesDict behaves like a dict
|
40 |
return out_state.get("final_answer", "No answer.")
|
tools.py
CHANGED
@@ -9,6 +9,8 @@ import time
|
|
9 |
import os
|
10 |
from duckduckgo_search import DDGS
|
11 |
from langchain_core.tools import tool
|
|
|
|
|
12 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
13 |
|
14 |
|
@@ -199,7 +201,7 @@ import requests
|
|
199 |
@tool
|
200 |
def wikipedia_search_tool(wiki_query: str) -> str:
|
201 |
"""
|
202 |
-
|
203 |
Expects: wiki_query is a nonβempty string.
|
204 |
Returns: text summary of first matching page or an error message>"
|
205 |
|
@@ -207,53 +209,29 @@ def wikipedia_search_tool(wiki_query: str) -> str:
|
|
207 |
"""
|
208 |
print("reached wikipedia search tool")
|
209 |
query = wiki_query
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
first_title = search_results[0].get("title", "")
|
234 |
-
if not first_title:
|
235 |
-
print("Unexpected format from Wikipedia search.")
|
236 |
-
return "Unexpected format from Wikipedia search."
|
237 |
-
|
238 |
-
# 3) Fetch the page summary for that title via the REST summary endpoint
|
239 |
-
title_for_url = requests.utils.requote_uri(first_title)
|
240 |
-
summary_url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{title_for_url}"
|
241 |
-
summary_resp = requests.get(summary_url, timeout=10)
|
242 |
-
summary_resp.raise_for_status()
|
243 |
-
summary_data = summary_resp.json()
|
244 |
-
|
245 |
-
# 4) Extract either the "extract" field or a fallback message
|
246 |
-
summary_text = summary_data.get("extract")
|
247 |
-
if not summary_text:
|
248 |
-
summary_text = summary_data.get("description", "No summary available.")
|
249 |
-
print(f"Title: {first_title}\n\n{summary_text}")
|
250 |
-
return f"Title: {first_title}\n\n{summary_text}"
|
251 |
-
|
252 |
-
|
253 |
-
except requests.exceptions.RequestException as e:
|
254 |
-
return f"Wikipedia search error: {e}"
|
255 |
-
except Exception as e:
|
256 |
-
return f"Unexpected error in wikipedia_search_tool: {e}"
|
257 |
|
258 |
|
259 |
from langchain_openai import ChatOpenAI
|
|
|
9 |
import os
|
10 |
from duckduckgo_search import DDGS
|
11 |
from langchain_core.tools import tool
|
12 |
+
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
|
13 |
+
|
14 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
15 |
|
16 |
|
|
|
201 |
@tool
|
202 |
def wikipedia_search_tool(wiki_query: str) -> str:
|
203 |
"""
|
204 |
+
Searches Wikipedia for the given query and returns the first 5 pages.
|
205 |
Expects: wiki_query is a nonβempty string.
|
206 |
Returns: text summary of first matching page or an error message>"
|
207 |
|
|
|
209 |
"""
|
210 |
print("reached wikipedia search tool")
|
211 |
query = wiki_query
|
212 |
+
docs = WikipediaLoader(query=query, load_max_docs=5).load()
|
213 |
+
result = ""
|
214 |
+
counter = 1
|
215 |
+
for doc in docs:
|
216 |
+
result += f"\n\nDocument{counter}: {doc.metadata['title']}\n. {doc.page_content}"
|
217 |
+
counter += 1
|
218 |
+
return result
|
219 |
+
|
220 |
+
@tool
|
221 |
+
def arxiv_search_tool(arxiv_query: str) -> str:
|
222 |
+
"""
|
223 |
+
Searches Arxiv for the given query and returns the first 5 pages.
|
224 |
+
Expects: arxiv_query is a nonβempty string.
|
225 |
+
Returns: text summary of first matching page or an error message>"
|
226 |
+
"""
|
227 |
+
print("reached arxiv_search_tool")
|
228 |
+
docs = ArxivLoader(query=arxiv_query, load_max_docs=5).load()
|
229 |
+
result = ""
|
230 |
+
counter = 1
|
231 |
+
for doc in docs:
|
232 |
+
result += f"\n\nDocument{counter}: {doc.metadata['title']}\n. {doc.page_content}"
|
233 |
+
counter += 1
|
234 |
+
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
|
236 |
|
237 |
from langchain_openai import ChatOpenAI
|
toolsold.py
ADDED
@@ -0,0 +1,349 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# tools.py
|
2 |
+
|
3 |
+
import pandas as pd
|
4 |
+
|
5 |
+
from pathlib import Path
|
6 |
+
import requests
|
7 |
+
import regex as re
|
8 |
+
import time
|
9 |
+
import os
|
10 |
+
from duckduckgo_search import DDGS
|
11 |
+
from langchain_core.tools import tool
|
12 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
13 |
+
|
14 |
+
|
15 |
+
def _download_file_for_task(task_id: str, ext: str) -> str:
|
16 |
+
"""
|
17 |
+
Helper: attempt to GET the remote file for a given task_id.
|
18 |
+
Saves under ./hf_files/{task_id}.{ext}. Returns the local path if successful,
|
19 |
+
or an empty string if no file / download failed.
|
20 |
+
"""
|
21 |
+
|
22 |
+
print("reached _download_file_for_task")
|
23 |
+
os.makedirs("hf_files", exist_ok=True)
|
24 |
+
local_path = os.path.join("hf_files", f"{task_id}.{ext}")
|
25 |
+
url = f"{DEFAULT_API_URL}/files/{task_id}"
|
26 |
+
|
27 |
+
try:
|
28 |
+
resp = requests.get(url, timeout=10)
|
29 |
+
if resp.status_code == 200 and resp.content:
|
30 |
+
print(f"Downloaded file from {url} to {local_path}")
|
31 |
+
with open(local_path, "wb") as f:
|
32 |
+
f.write(resp.content)
|
33 |
+
return local_path
|
34 |
+
except Exception:
|
35 |
+
print(f"Error downloading file from {url} to {local_path}")
|
36 |
+
pass
|
37 |
+
|
38 |
+
# If we get here, either 404 or download error
|
39 |
+
return ""
|
40 |
+
|
41 |
+
@tool
|
42 |
+
def image_tool(task_id: str) -> str:
|
43 |
+
"""
|
44 |
+
Expects: task_id is a string
|
45 |
+
Returns: "OCR text + brief caption or an error message"
|
46 |
+
|
47 |
+
"""
|
48 |
+
print("reached image_tool")
|
49 |
+
# path_or_id = state.get("ocr_path", "")
|
50 |
+
for ext in ("png", "jpg", "jpeg"):
|
51 |
+
candidate = _download_file_for_task(task_id, ext)
|
52 |
+
if candidate:
|
53 |
+
local_img = candidate
|
54 |
+
break
|
55 |
+
|
56 |
+
if not local_img or not os.path.exists(local_img):
|
57 |
+
return {
|
58 |
+
"ocr_path": None,
|
59 |
+
"ocr_result": "Error: No image file found (local nonexistent or download failed)."
|
60 |
+
}
|
61 |
+
|
62 |
+
# 2) Read raw bytes
|
63 |
+
try:
|
64 |
+
with open(local_img, "rb") as f:
|
65 |
+
image_bytes = f.read()
|
66 |
+
except Exception as e:
|
67 |
+
return f"Error reading image file: {e}"
|
68 |
+
|
69 |
+
|
70 |
+
# 3) Prepare HF Inference headers
|
71 |
+
hf_token = os.getenv("HF_TOKEN")
|
72 |
+
if not hf_token:
|
73 |
+
return "Error: HUGGINGFACE_API_KEY not set in environment."
|
74 |
+
|
75 |
+
|
76 |
+
headers = {"Authorization": f"Bearer {hf_token}"}
|
77 |
+
|
78 |
+
# 4) Call HFβs vision-ocr to extract text
|
79 |
+
ocr_text = ""
|
80 |
+
try:
|
81 |
+
ocr_resp = requests.post(
|
82 |
+
"https://api-inference.huggingface.co/models/google/vit-ocr",
|
83 |
+
headers=headers,
|
84 |
+
files={"file": image_bytes},
|
85 |
+
timeout=30
|
86 |
+
)
|
87 |
+
ocr_resp.raise_for_status()
|
88 |
+
ocr_json = ocr_resp.json()
|
89 |
+
|
90 |
+
# The JSON has βpagesβ β list of blocks β βlinesβ β each line has βtextβ
|
91 |
+
lines = []
|
92 |
+
for page in ocr_json.get("pages", []):
|
93 |
+
for line in page.get("lines", []):
|
94 |
+
lines.append(line.get("text", "").strip())
|
95 |
+
ocr_text = "\n".join(lines).strip() or "(no visible text)"
|
96 |
+
except Exception as e:
|
97 |
+
ocr_text = f"Error during HF OCR: {e}"
|
98 |
+
|
99 |
+
# 5) Call HFβs image-captioning to get a brief description
|
100 |
+
caption = ""
|
101 |
+
try:
|
102 |
+
cap_resp = requests.post(
|
103 |
+
"https://api-inference.huggingface.co/models/Salesforce/blip-image-captioning-base",
|
104 |
+
headers=headers,
|
105 |
+
files={"file": image_bytes},
|
106 |
+
timeout=30
|
107 |
+
)
|
108 |
+
cap_resp.raise_for_status()
|
109 |
+
cap_json = cap_resp.json()
|
110 |
+
# The response looks like: {"generated_text": "...caption..."}
|
111 |
+
caption = cap_json.get("generated_text", "").strip()
|
112 |
+
if not caption:
|
113 |
+
caption = "(no caption returned)"
|
114 |
+
except Exception as e:
|
115 |
+
caption = f"Error during HF captioning: {e}"
|
116 |
+
|
117 |
+
# 6) Combine OCR + caption
|
118 |
+
combined = f"OCR text:\n{ocr_text}\n\nImage caption:\n{caption}"
|
119 |
+
print("combined: ")
|
120 |
+
return combined
|
121 |
+
|
122 |
+
@tool
|
123 |
+
def excel_tool(task_id: str) -> str:
|
124 |
+
"""
|
125 |
+
Downloads <task_id>.xlsx (if any) and returns a stringified list of
|
126 |
+
records from the specified sheet. No fallback to user-supplied tables.
|
127 |
+
Expected keys in `task_id`:
|
128 |
+
β’ task_id β required (used to download the file)
|
129 |
+
|
130 |
+
returns: stringified list of records from the specified sheet
|
131 |
+
"""
|
132 |
+
print("reached excel_tool")
|
133 |
+
sheet = "Sheet1"
|
134 |
+
|
135 |
+
local_xlsx = _download_file_for_task(task_id, "xlsx")
|
136 |
+
if not local_xlsx or not os.path.exists(local_xlsx):
|
137 |
+
return "Error: Excel file not found for this task."
|
138 |
+
|
139 |
+
try:
|
140 |
+
xls = pd.ExcelFile(local_xlsx)
|
141 |
+
df = pd.read_excel(
|
142 |
+
xls,
|
143 |
+
sheet_name=sheet if sheet and sheet in xls.sheet_names else xls.sheet_names[0]
|
144 |
+
)
|
145 |
+
print(f"Excel file read successfully: {str(df.to_dict(orient='records'))}")
|
146 |
+
return str(df.to_dict(orient="records"))
|
147 |
+
except Exception as e:
|
148 |
+
return f"Error reading Excel file: {e}"
|
149 |
+
|
150 |
+
|
151 |
+
import openai
|
152 |
+
@tool
|
153 |
+
def audio_transcriber_tool(task_id: str) -> str:
|
154 |
+
"""
|
155 |
+
LangGraph tool for transcribing audio via OpenAI's Whisper API.
|
156 |
+
Expects: task_id is a string
|
157 |
+
Returns:
|
158 |
+
"<text or error message>"
|
159 |
+
Always attempts to download the file for the given path or task ID.
|
160 |
+
"""
|
161 |
+
print("reached audio_transcriber_tool")
|
162 |
+
|
163 |
+
|
164 |
+
# Always attempt to download the file, regardless of local existence
|
165 |
+
local_audio = ""
|
166 |
+
for ext in ("mp3", "wav", "m4a"):
|
167 |
+
candidate = _download_file_for_task(task_id, ext)
|
168 |
+
if candidate:
|
169 |
+
local_audio = candidate
|
170 |
+
break
|
171 |
+
|
172 |
+
if not local_audio or not os.path.exists(local_audio):
|
173 |
+
return "Error: No audio file found (download failed)."
|
174 |
+
|
175 |
+
|
176 |
+
# Send to OpenAI Whisper
|
177 |
+
try:
|
178 |
+
openai.api_key = os.getenv("OPENAI_API_KEY")
|
179 |
+
if not openai.api_key:
|
180 |
+
raise RuntimeError("OPENAI_API_KEY is not set in environment.")
|
181 |
+
|
182 |
+
with open(local_audio, "rb") as audio_file:
|
183 |
+
print("reached openai.audio.transcriptions.create")
|
184 |
+
response = openai.audio.transcriptions.create(
|
185 |
+
model="whisper-1",
|
186 |
+
file=audio_file,
|
187 |
+
)
|
188 |
+
print("reached response")
|
189 |
+
text = response.text.strip()
|
190 |
+
except Exception as e:
|
191 |
+
text = f"Error during transcription: {e}"
|
192 |
+
print(f"Transcripted as transcript: {text}")
|
193 |
+
return text
|
194 |
+
# tools.py
|
195 |
+
|
196 |
+
import re
|
197 |
+
import requests
|
198 |
+
|
199 |
+
@tool
|
200 |
+
def wikipedia_search_tool(wiki_query: str) -> str:
|
201 |
+
"""
|
202 |
+
LangGraph wrapper for searching Wikipedia.
|
203 |
+
Expects: wiki_query is a nonβempty string.
|
204 |
+
Returns: text summary of first matching page or an error message>"
|
205 |
+
|
206 |
+
If no valid wiki_query is provided, returns {}.
|
207 |
+
"""
|
208 |
+
print("reached wikipedia search tool")
|
209 |
+
query = wiki_query
|
210 |
+
if not query:
|
211 |
+
return {}
|
212 |
+
|
213 |
+
try:
|
214 |
+
# 1) Use the MediaWiki API to search for page titles matching the query
|
215 |
+
search_params = {
|
216 |
+
"action": "query",
|
217 |
+
"list": "search",
|
218 |
+
"srsearch": query,
|
219 |
+
"format": "json",
|
220 |
+
"utf8": 1
|
221 |
+
}
|
222 |
+
search_resp = requests.get("https://en.wikipedia.org/w/api.php", params=search_params, timeout=10)
|
223 |
+
search_resp.raise_for_status()
|
224 |
+
search_data = search_resp.json()
|
225 |
+
|
226 |
+
search_results = search_data.get("query", {}).get("search", [])
|
227 |
+
# print("wikipedia: search_results",search_results)
|
228 |
+
if not search_results:
|
229 |
+
print(f"No Wikipedia page found for '{query}'.")
|
230 |
+
return f"No Wikipedia page found for '{query}'."
|
231 |
+
|
232 |
+
# 2) Take the first search result's title
|
233 |
+
first_title = search_results[0].get("title", "")
|
234 |
+
if not first_title:
|
235 |
+
print("Unexpected format from Wikipedia search.")
|
236 |
+
return "Unexpected format from Wikipedia search."
|
237 |
+
|
238 |
+
# 3) Fetch the page summary for that title via the REST summary endpoint
|
239 |
+
title_for_url = requests.utils.requote_uri(first_title)
|
240 |
+
summary_url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{title_for_url}"
|
241 |
+
summary_resp = requests.get(summary_url, timeout=10)
|
242 |
+
summary_resp.raise_for_status()
|
243 |
+
summary_data = summary_resp.json()
|
244 |
+
|
245 |
+
# 4) Extract either the "extract" field or a fallback message
|
246 |
+
summary_text = summary_data.get("extract")
|
247 |
+
if not summary_text:
|
248 |
+
summary_text = summary_data.get("description", "No summary available.")
|
249 |
+
print(f"Title: {first_title}\n\n{summary_text}")
|
250 |
+
return f"Title: {first_title}\n\n{summary_text}"
|
251 |
+
|
252 |
+
|
253 |
+
except requests.exceptions.RequestException as e:
|
254 |
+
return f"Wikipedia search error: {e}"
|
255 |
+
except Exception as e:
|
256 |
+
return f"Unexpected error in wikipedia_search_tool: {e}"
|
257 |
+
|
258 |
+
|
259 |
+
from langchain_openai import ChatOpenAI
|
260 |
+
from langchain.schema import SystemMessage, HumanMessage
|
261 |
+
LLM = ChatOpenAI(model_name="gpt-4.1-mini", temperature=0.2)
|
262 |
+
|
263 |
+
@tool
|
264 |
+
def analyze_code_tool(task_id: str) -> str:
|
265 |
+
"""
|
266 |
+
Either task_id OR (file + task_id)
|
267 |
+
Reads the code (max 400 lines / 10 kB) and asks the LLM for:
|
268 |
+
β’ plain-language summary
|
269 |
+
β’ list of key functions/classes
|
270 |
+
β’ obvious bugs or style smells
|
271 |
+
Returns that analysis as a string.
|
272 |
+
"""
|
273 |
+
print("reached analyze_code_tool")
|
274 |
+
code_txt = ""
|
275 |
+
if not task_id:
|
276 |
+
code_txt = "No code provided."
|
277 |
+
else:
|
278 |
+
path = _download_file_for_task(task_id, "py")
|
279 |
+
if not path:
|
280 |
+
return "Error: .py file not found for this task."
|
281 |
+
code_txt = Path(path).read_text(encoding="utf-8", errors="ignore")
|
282 |
+
# else:
|
283 |
+
# return "Error: neither snippet nor file provided."
|
284 |
+
|
285 |
+
# Truncate for safety
|
286 |
+
lines = code_txt.splitlines()[:400]
|
287 |
+
code_sample = "\n".join(lines)[:10_000]
|
288 |
+
|
289 |
+
prompt = [
|
290 |
+
SystemMessage(content="You are a senior Python code reviewer."),
|
291 |
+
HumanMessage(content=(
|
292 |
+
"Please analyse the following code. "
|
293 |
+
"Summarise what it does, list key functions/classes, "
|
294 |
+
"and point out any obvious bugs, performance issues or style problems.\n\n"
|
295 |
+
f"```python\n{code_sample}\n```"
|
296 |
+
"If you can then find the output of the code and return it in the output."
|
297 |
+
))
|
298 |
+
]
|
299 |
+
return LLM.invoke(prompt).content.strip()
|
300 |
+
|
301 |
+
|
302 |
+
# def web_search_tool(state: AgentState) -> AgentState:
|
303 |
+
# """
|
304 |
+
# Expects: state["web_search_query"] is a nonβempty string.
|
305 |
+
# Returns: {"web_search_query": None, "web_search_result": <string>}.
|
306 |
+
# Retries up to 5 times on either a DuckDuckGo β202 Ratelimitβ response or any exception (e.g. timeout).
|
307 |
+
# """
|
308 |
+
# print("reached web_search_tool")
|
309 |
+
# query = state.get("web_search_query", "")
|
310 |
+
# if not query:
|
311 |
+
# return {} # nothing to do
|
312 |
+
|
313 |
+
# ddg = DDGS()
|
314 |
+
# max_retries = 5
|
315 |
+
# result_text = ""
|
316 |
+
|
317 |
+
# for attempt in range(1, max_retries + 1):
|
318 |
+
# try:
|
319 |
+
# result_text = str(ddg.text(query, max_results=5))
|
320 |
+
# except Exception as e:
|
321 |
+
# # Network error or timeoutβretry up to max_retries
|
322 |
+
# if attempt < max_retries:
|
323 |
+
# print(f"web_search_tool: exception '{e}', retrying in 4 seconds ({attempt}/{max_retries})")
|
324 |
+
# time.sleep(4)
|
325 |
+
# continue
|
326 |
+
# else:
|
327 |
+
# # Final attempt failed
|
328 |
+
# return {
|
329 |
+
# "web_search_query": None,
|
330 |
+
# "web_search_result": f"Error during DuckDuckGo search: {e}"
|
331 |
+
# }
|
332 |
+
|
333 |
+
# # Check for DuckDuckGo rateβlimit indicator
|
334 |
+
# if "202 Ratelimit" in result_text:
|
335 |
+
# if attempt < max_retries:
|
336 |
+
# print(f"web_search_tool: received '202 Ratelimit', retrying in 4 seconds ({attempt}/{max_retries})")
|
337 |
+
# time.sleep(4)
|
338 |
+
# continue
|
339 |
+
# else:
|
340 |
+
# # Final attempt still rateβlimited
|
341 |
+
# break
|
342 |
+
|
343 |
+
# # Successful response (no exception and no rateβlimit text)
|
344 |
+
# break
|
345 |
+
|
346 |
+
# return {
|
347 |
+
# "web_search_query": None,
|
348 |
+
# "web_search_result": result_text
|
349 |
+
# }
|