naman1102 commited on
Commit
1f5cba5
·
1 Parent(s): 81917a3
Files changed (3) hide show
  1. app.py +27 -0
  2. requirements.txt +3 -1
  3. tools.py +68 -0
app.py CHANGED
@@ -3,13 +3,35 @@ import gradio as gr
3
  import requests
4
  import inspect
5
  import pandas as pd
 
 
6
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  # (Keep Constants as is)
8
  # --- Constants ---
9
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
 
11
  # --- Basic Agent Definition ---
12
  # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
 
 
 
 
 
 
 
 
13
  class BasicAgent:
14
  def __init__(self):
15
  print("BasicAgent initialized.")
@@ -19,6 +41,11 @@ class BasicAgent:
19
  print(f"Agent returning fixed answer: {fixed_answer}")
20
  return fixed_answer
21
 
 
 
 
 
 
22
  def run_and_submit_all( profile: gr.OAuthProfile | None):
23
  """
24
  Fetches all questions, runs the BasicAgent on them, submits all answers,
 
3
  import requests
4
  import inspect
5
  import pandas as pd
6
+ from langgraph.prebuilt import LLMNode,ToolNode
7
+ from tools import web_search, parse_excel, ocr_image
8
 
9
+ from typing import TypedDict, Annotated
10
+
11
+ from langchain.chat_models import ChatOpenAI
12
+ from langgraph.graph import StateGraph, START, END
13
+ from langgraph.graph.message import add_messages
14
+
15
+ # Create a ToolNode that knows about your web_search function
16
+ search_node = ToolNode([web_search])
17
+
18
+ excel_tool_node = ToolNode([parse_excel])
19
+
20
+ image_tool_node = ToolNode([ocr_image])
21
  # (Keep Constants as is)
22
  # --- Constants ---
23
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
24
 
25
  # --- Basic Agent Definition ---
26
  # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
27
+
28
+
29
+
30
+
31
+
32
+
33
+
34
+
35
  class BasicAgent:
36
  def __init__(self):
37
  print("BasicAgent initialized.")
 
41
  print(f"Agent returning fixed answer: {fixed_answer}")
42
  return fixed_answer
43
 
44
+
45
+
46
+
47
+
48
+
49
  def run_and_submit_all( profile: gr.OAuthProfile | None):
50
  """
51
  Fetches all questions, runs the BasicAgent on them, submits all answers,
requirements.txt CHANGED
@@ -1,2 +1,4 @@
1
  gradio
2
- requests
 
 
 
1
  gradio
2
+ requests
3
+ pillow
4
+ pytesseract
tools.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langchain_core.tools import tool
2
+ from langchain.utilities import DuckDuckGoSearchRun
3
+ import pandas as pd
4
+ @tool
5
+ def web_search(query: str) -> str:
6
+ ddg = DuckDuckGoSearchRun()
7
+ return ddg.run(query)
8
+
9
+
10
+ @tool
11
+ def parse_excel(path: str, sheet_name: str = None) -> str:
12
+
13
+ """
14
+ Read in an Excel file at `path`, optionally select a sheet by name (or default to the first sheet),
15
+ then convert the DataFrame to a JSON-like string. Return that text so the LLM can reason over it.
16
+
17
+ Example return value (collapsed):
18
+ "[{'Name': 'Alice', 'Score': 95}, {'Name': 'Bob', 'Score': 88}, ...]"
19
+ """
20
+ # 1. Load the Excel workbook
21
+ try:
22
+ xls = pd.ExcelFile(path)
23
+ except FileNotFoundError:
24
+ return f"Error: could not find file at {path}."
25
+
26
+ # 2. Choose the sheet
27
+ if sheet_name and sheet_name in xls.sheet_names:
28
+ df = pd.read_excel(xls, sheet_name=sheet_name)
29
+ else:
30
+ # default to first sheet
31
+ df = pd.read_excel(xls, sheet_name=xls.sheet_names[0])
32
+
33
+ # 3. Option A: convert to JSON
34
+ records = df.to_dict(orient="records")
35
+ return str(records)
36
+
37
+
38
+
39
+ # tools.py
40
+
41
+ from pathlib import Path
42
+ from PIL import Image
43
+ import pytesseract
44
+
45
+
46
+ @tool
47
+ def ocr_image(path: str) -> str:
48
+ """
49
+ Run OCR on the image at `path` and return the extracted text.
50
+ - Expects that Tesseract is installed on the host machine.
51
+ - If the file is missing or unreadable, returns an error string.
52
+ """
53
+ file = Path(path)
54
+ if not file.exists():
55
+ return f"Error: could not find image at {path}"
56
+ try:
57
+ # Open image via PIL
58
+ img = Image.open(file)
59
+ except Exception as e:
60
+ return f"Error: could not open image: {e}"
61
+
62
+ try:
63
+ # Run pytesseract OCR
64
+ text = pytesseract.image_to_string(img)
65
+ except Exception as e:
66
+ return f"Error: OCR failed: {e}"
67
+
68
+ return text.strip() or "(no visible text detected)"