Spaces:
Sleeping
Sleeping
new
Browse files- app.py +145 -334
- old2app.py +587 -0
- old2state.py +22 -0
- old2tools.py +422 -0
- old_app_copy.py +2 -2
- state.py +22 -21
- tools.py +99 -199
app.py
CHANGED
@@ -1,17 +1,9 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
-
import inspect
|
5 |
import pandas as pd
|
6 |
-
from langgraph.prebuilt import ToolNode
|
7 |
-
|
8 |
-
|
9 |
-
# from typing import Any, Dict
|
10 |
-
# from typing import TypedDict, Annotated
|
11 |
-
|
12 |
from langchain_openai import ChatOpenAI
|
13 |
from langgraph.graph import StateGraph, START, END
|
14 |
-
from langgraph.graph.message import add_messages
|
15 |
from langchain.schema import HumanMessage, SystemMessage, AIMessage
|
16 |
# Create a ToolNode that knows about your web_search function
|
17 |
import json
|
@@ -20,369 +12,188 @@ from state import AgentState
|
|
20 |
# --- Constants ---
|
21 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
22 |
|
23 |
-
from tools import ocr_image_tool, parse_excel_tool, web_search_tool, run_tools, audio_transcriber_tool, wikipedia_search_tool
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
# ─── 1) plan_node ───
|
28 |
-
# ─── 1) plan_node ───
|
29 |
-
tool_counter = 0
|
30 |
|
|
|
31 |
|
32 |
-
|
33 |
-
def plan_node(state: AgentState) -> AgentState:
|
34 |
-
"""
|
35 |
-
Step 1: Ask GPT to draft a concise direct answer (INTERIM_ANSWER),
|
36 |
-
then decide if it's confident enough to stop or if it needs one tool.
|
37 |
-
If confident: return {"final_answer":"<answer>"}
|
38 |
-
Otherwise: return exactly one of:
|
39 |
-
{"wiki_query":"..."},
|
40 |
-
{"ocr_path":"..."},
|
41 |
-
{"excel_path":"...","excel_sheet_name":"..."},
|
42 |
-
{"audio_path":"..."}
|
43 |
-
"""
|
44 |
-
prior_msgs = state.get("messages", [])
|
45 |
-
user_input = ""
|
46 |
-
for msg in reversed(prior_msgs):
|
47 |
-
if isinstance(msg, HumanMessage):
|
48 |
-
user_input = msg.content
|
49 |
-
break
|
50 |
-
|
51 |
-
system_msg = SystemMessage(
|
52 |
-
content=(
|
53 |
-
|
54 |
-
"You are an agent that must do two things in one JSON output:\n\n"
|
55 |
-
" 1) Provide a concise, direct answer to the user's question (no explanation).\n"
|
56 |
-
" 2) Judge whether that answer is reliable:\n"
|
57 |
-
" • If you are fully confident, return exactly:\n"
|
58 |
-
" {\"final_answer\":\"<your concise answer>\"}\n"
|
59 |
-
" and nothing else.\n"
|
60 |
-
" • Otherwise, return exactly one of:\n"
|
61 |
-
" {\"wiki_query\":\"<Wikipedia search>\"}\n"
|
62 |
-
" {\"ocr_path\":\"<image path or task_id>\"}\n"
|
63 |
-
" {\"excel_path\":\"<xlsx path>\", \"excel_sheet_name\":\"<sheet name>\"}\n"
|
64 |
-
" {\"audio_path\":\"<audio path or task_id>\"}\n"
|
65 |
-
" and nothing else.\n"
|
66 |
-
"Do NOT wrap in markdown—output only a single JSON object.\n"
|
67 |
-
f"User's question: \"{user_input}\"\n"
|
68 |
-
)
|
69 |
-
)
|
70 |
-
human_msg = HumanMessage(content=user_input)
|
71 |
-
llm_response = llm([system_msg, human_msg])
|
72 |
-
llm_out = llm_response.content.strip()
|
73 |
|
74 |
-
ai_msg = AIMessage(content=llm_out)
|
75 |
-
new_msgs = prior_msgs.copy() + [ai_msg]
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
"ocr_path",
|
85 |
-
"excel_path",
|
86 |
-
"excel_sheet_name",
|
87 |
-
"audio_path",
|
88 |
-
}
|
89 |
-
for k, v in parsed.items():
|
90 |
-
if k in allowed:
|
91 |
-
partial[k] = v
|
92 |
-
return partial
|
93 |
-
except json.JSONDecodeError:
|
94 |
-
pass
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
}
|
100 |
|
|
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
|
|
|
|
105 |
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
- ocr_path → ocr_image_tool
|
113 |
-
- excel_path → parse_excel_tool
|
114 |
-
- audio_path → audio_transcriber_tool
|
115 |
-
"""
|
116 |
-
global tool_counter
|
117 |
-
if tool_counter >= 5:
|
118 |
-
# If we've already run 5 tools, do nothing
|
119 |
-
return {
|
120 |
-
"messages": state["messages"],
|
121 |
-
"final_answer": state.get("final_answer", "No interim answer available.")
|
122 |
-
}
|
123 |
-
|
124 |
-
tool_counter += 1
|
125 |
-
|
126 |
-
if state.get("wiki_query"):
|
127 |
-
return wikipedia_search_tool(state)
|
128 |
-
if state.get("ocr_path"):
|
129 |
-
return ocr_image_tool(state)
|
130 |
-
if state.get("excel_path"):
|
131 |
-
return parse_excel_tool(state)
|
132 |
-
if state.get("audio_path"):
|
133 |
-
return audio_transcriber_tool(state)
|
134 |
-
|
135 |
-
return {} # no tool key present
|
136 |
-
|
137 |
-
|
138 |
-
# ─── 4) merge_tool_output ───
|
139 |
-
def merge_tool_output(state: AgentState) -> AgentState:
|
140 |
-
"""
|
141 |
-
Combine previous state and tool output into one, but remove any stale request-keys.
|
142 |
-
"""
|
143 |
-
prev = state.get("prev_state", {}).copy()
|
144 |
|
145 |
-
|
146 |
-
for dead in ["wiki_query", "ocr_path", "excel_path", "excel_sheet_name", "audio_path"]:
|
147 |
-
prev.pop(dead, None)
|
148 |
|
149 |
-
merged = {**prev, **state}
|
150 |
-
# Drop them again from merged so they don't persist into the next cycle
|
151 |
-
for dead in ["wiki_query", "ocr_path", "excel_path", "excel_sheet_name", "audio_path"]:
|
152 |
-
merged.pop(dead, None)
|
153 |
|
154 |
-
merged.pop("prev_state", None)
|
155 |
-
return merged
|
156 |
|
|
|
157 |
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
- The INTERIM_ANSWER (always present if plan_node ran correctly)
|
165 |
-
|
166 |
-
If tool_counter ≥ 5, use LLM once more (with full context) to craft a final answer.
|
167 |
-
Otherwise, ask GPT to either:
|
168 |
-
• Return {"final_answer":"<final>"} if done, OR
|
169 |
-
• Return exactly one tool key to run next (wiki_query / ocr_path / excel_path & excel_sheet_name / audio_path).
|
170 |
-
"""
|
171 |
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
for msg in reversed(state.get("messages", [])):
|
181 |
-
if isinstance(msg, HumanMessage):
|
182 |
-
question = msg.content
|
183 |
-
break
|
184 |
-
messages_for_llm.append(SystemMessage(content=f"USER_QUESTION: {question}"))
|
185 |
-
|
186 |
-
# Add any tool results so far
|
187 |
-
if sr := state.get("web_search_result"):
|
188 |
-
messages_for_llm.append(SystemMessage(content=f"WEB_SEARCH_RESULT: {sr}"))
|
189 |
-
if orc := state.get("ocr_result"):
|
190 |
-
messages_for_llm.append(SystemMessage(content=f"OCR_RESULT: {orc}"))
|
191 |
-
if exr := state.get("excel_result"):
|
192 |
-
messages_for_llm.append(SystemMessage(content=f"EXCEL_RESULT: {exr}"))
|
193 |
-
if tr := state.get("transcript"):
|
194 |
-
messages_for_llm.append(SystemMessage(content=f"AUDIO_TRANSCRIPT: {tr}"))
|
195 |
-
if wr := state.get("wiki_result"):
|
196 |
-
messages_for_llm.append(SystemMessage(content=f"WIKIPEDIA_RESULT: {wr}"))
|
197 |
-
|
198 |
-
# Show the interim answer
|
199 |
-
interim = state.get("interim_answer", "")
|
200 |
-
messages_for_llm.append(SystemMessage(content=f"INTERIM_ANSWER: {interim}"))
|
201 |
-
|
202 |
-
# Now ask for JSON ONLY (no reasoning, no extra text)
|
203 |
-
final_prompt = (
|
204 |
-
"Finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."
|
205 |
-
"Using only the information above—including the USER_QUESTION, "
|
206 |
-
"any TOOL_RESULT, and the INTERIM_ANSWER—produce a concise final answer. "
|
207 |
-
"Return exactly one JSON object and nothing else, in this format:\n\n"
|
208 |
-
"{\"final_answer\":\"<your final answer>\"}\n"
|
209 |
-
"Do not include any other words or punctuation outside that JSON. if its numbers, dont show the units"
|
210 |
)
|
211 |
-
messages_for_llm.append(SystemMessage(content=final_prompt))
|
212 |
-
|
213 |
-
llm_response = llm(messages_for_llm)
|
214 |
-
raw = llm_response.content.strip()
|
215 |
-
new_msgs = state["messages"] + [AIMessage(content=raw)]
|
216 |
-
|
217 |
-
# Try to parse exactly one JSON with "final_answer"
|
218 |
-
try:
|
219 |
-
parsed = json.loads(raw)
|
220 |
-
if isinstance(parsed, dict) and "final_answer" in parsed:
|
221 |
-
return {"messages": new_msgs, "final_answer": parsed["final_answer"]}
|
222 |
-
except json.JSONDecodeError:
|
223 |
-
pass
|
224 |
-
|
225 |
-
# Fallback to returning the interim in case JSON parse fails
|
226 |
-
return {"messages": new_msgs, "final_answer": interim}
|
227 |
-
# ——————————— If tool_counter < 5, proceed as before ———————————
|
228 |
-
messages_for_llm = []
|
229 |
-
|
230 |
-
# (1) Re‐insert original user question
|
231 |
-
question = ""
|
232 |
-
for msg in reversed(state.get("messages", [])):
|
233 |
-
if isinstance(msg, HumanMessage):
|
234 |
-
question = msg.content
|
235 |
-
break
|
236 |
-
messages_for_llm.append(SystemMessage(content=f"USER_QUESTION: {question}"))
|
237 |
-
|
238 |
-
# (2) Add any tool results
|
239 |
-
if sr := state.get("web_search_result"):
|
240 |
-
messages_for_llm.append(SystemMessage(content=f"WEB_SEARCH_RESULT: {sr}"))
|
241 |
-
if orc := state.get("ocr_result"):
|
242 |
-
messages_for_llm.append(SystemMessage(content=f"OCR_RESULT: {orc}"))
|
243 |
-
if exr := state.get("excel_result"):
|
244 |
-
messages_for_llm.append(SystemMessage(content=f"EXCEL_RESULT: {exr}"))
|
245 |
-
if tr := state.get("transcript"):
|
246 |
-
messages_for_llm.append(SystemMessage(content=f"AUDIO_TRANSCRIPT: {tr}"))
|
247 |
-
if wr := state.get("wiki_result"):
|
248 |
-
messages_for_llm.append(SystemMessage(content=f"WIKIPEDIA_RESULT: {wr}"))
|
249 |
-
|
250 |
-
# (3) Always show the interim answer
|
251 |
-
interim = state.get("interim_answer", "")
|
252 |
-
messages_for_llm.append(SystemMessage(content=f"INTERIM_ANSWER: {interim}"))
|
253 |
-
|
254 |
-
# (4) Prompt GPT to decide final or another tool
|
255 |
-
prompt = (
|
256 |
-
"You have a current draft answer (INTERIM_ANSWER) and possibly some tool results above.\n"
|
257 |
-
"If you are confident it’s correct, return exactly:\n"
|
258 |
-
" {\"final_answer\":\"<your final answer>\"}\n"
|
259 |
-
"and nothing else.\n"
|
260 |
-
"Otherwise, return exactly one of these JSON literals to fetch another tool:\n"
|
261 |
-
" {\"wiki_query\":\"<query for Wikipedia>\"}\n"
|
262 |
-
" {\"ocr_path\":\"<image path or task_id>\"}\n"
|
263 |
-
" {\"excel_path\":\"<xls path>\", \"excel_sheet_name\":\"<sheet name>\"}\n"
|
264 |
-
" {\"audio_path\":\"<audio path or task_id>\"}\n"
|
265 |
-
"Do NOT wrap in markdown—return only the JSON object.\n"
|
266 |
)
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
return
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
|
|
|
305 |
|
306 |
-
# ─── 7) Build the graph and wire edges ───
|
307 |
graph = StateGraph(AgentState)
|
308 |
|
309 |
# Register nodes
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
|
|
|
|
|
|
|
|
325 |
|
326 |
graph.add_conditional_edges(
|
327 |
-
"
|
328 |
-
|
329 |
-
{
|
|
|
|
|
|
|
|
|
|
|
|
|
330 |
)
|
331 |
|
332 |
-
#
|
333 |
-
|
|
|
334 |
|
335 |
-
#
|
336 |
-
graph.add_edge("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
|
338 |
-
# merge_tool_output → inspect
|
339 |
-
graph.add_edge("merge_tool_output", "inspect")
|
340 |
|
341 |
-
# inspect → either finalize (if inspect set final_answer) or store_prev_state (if inspect wants another tool)
|
342 |
-
def route_inspect(inspect_out: AgentState) -> str:
|
343 |
-
if inspect_out.get("final_answer") is not None:
|
344 |
-
return "finalize"
|
345 |
-
return "store_prev_state"
|
346 |
|
347 |
-
graph.add_conditional_edges(
|
348 |
-
"inspect",
|
349 |
-
route_inspect,
|
350 |
-
{"store_prev_state": "store_prev_state", "finalize": "finalize"},
|
351 |
-
)
|
352 |
|
353 |
-
# finalize → END
|
354 |
-
graph.add_edge("finalize", END)
|
355 |
|
356 |
-
compiled_graph = graph.compile()
|
357 |
|
358 |
|
359 |
-
# ─── 8) respond_to_input ───
|
360 |
-
def respond_to_input(user_input: str, task_id) -> str:
|
361 |
-
"""
|
362 |
-
Reset the global tool_counter, seed state['messages'], invoke the graph,
|
363 |
-
and return the final_answer.
|
364 |
-
"""
|
365 |
-
global tool_counter
|
366 |
-
tool_counter = 0 # Reset on every new user query
|
367 |
|
368 |
-
system_msg = SystemMessage(
|
369 |
-
content=(
|
370 |
-
"You are an agent orchestrator. Decide whether to use a tool or answer directly.\n"
|
371 |
-
"Try not to use tools so many times. If you think you can answer the question without using a tool, do it Please.\n"
|
372 |
-
"Tools available:\n"
|
373 |
-
" • Wikipedia: set {\"wiki_query\":\"<search terms>\"}\n"
|
374 |
-
" • OCR: set {\"ocr_path\":\"<image path or task_id>\"}\n"
|
375 |
-
" • Excel: set {\"excel_path\":\"<xlsx path>\", \"excel_sheet_name\":\"<sheet>\"}\n"
|
376 |
-
" • Audio transcription: set {\"audio_path\":\"<audio path or task_id>\"}\n"
|
377 |
-
"If you can answer immediately, set {\"final_answer\":\"<answer>\"}. "
|
378 |
-
"Respond with only one JSON object and no extra formatting."
|
379 |
-
)
|
380 |
-
)
|
381 |
-
human_msg = HumanMessage(content=user_input)
|
382 |
|
383 |
-
initial_state: AgentState = {"messages": [system_msg, human_msg], "task_id": task_id}
|
384 |
-
final_state = compiled_graph.invoke(initial_state)
|
385 |
-
return final_state.get("final_answer", "Error: No final answer generated.")
|
386 |
|
387 |
class BasicAgent:
|
388 |
def __init__(self):
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
|
|
4 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from langchain_openai import ChatOpenAI
|
6 |
from langgraph.graph import StateGraph, START, END
|
|
|
7 |
from langchain.schema import HumanMessage, SystemMessage, AIMessage
|
8 |
# Create a ToolNode that knows about your web_search function
|
9 |
import json
|
|
|
12 |
# --- Constants ---
|
13 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
14 |
|
|
|
15 |
|
16 |
+
from __future__ import annotations
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
import json
|
19 |
|
20 |
+
from typing import Any, Dict, List, Optional
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
|
|
|
|
22 |
|
23 |
+
# ─────────────────────────── External tools ──────────────────────────────
|
24 |
+
from tools import (
|
25 |
+
wikipedia_search_tool,
|
26 |
+
ocr_image_tool,
|
27 |
+
audio_transcriber_tool,
|
28 |
+
parse_excel_tool
|
29 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
# ─────────────────────────── Configuration ───────────────────────────────
|
32 |
+
LLM = ChatOpenAI(model_name="gpt-4o-mini", temperature=0.0)
|
33 |
+
MAX_TOOL_CALLS = 5
|
|
|
34 |
|
35 |
+
# ─────────────────────────── Helper utilities ────────────────────────────
|
36 |
|
37 |
+
def safe_json(text: str) -> Optional[Dict[str, Any]]:
|
38 |
+
try:
|
39 |
+
obj = json.loads(text.strip())
|
40 |
+
return obj if isinstance(obj, dict) else None
|
41 |
+
except json.JSONDecodeError:
|
42 |
+
return None
|
43 |
|
44 |
|
45 |
+
def brief(d: Dict[str, Any]) -> str:
|
46 |
+
for k in ("wiki_result", "ocr_result", "transcript"):
|
47 |
+
if k in d:
|
48 |
+
return f"{k}: {str(d[k])[:160].replace('\n', ' ')}…"
|
49 |
+
return "(no output)"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
# ─────────────────────────── Agent state ⬇ ───────────────────────────────
|
|
|
|
|
52 |
|
|
|
|
|
|
|
|
|
53 |
|
|
|
|
|
54 |
|
55 |
+
# ───────────────────────────── Nodes ⬇ ───────────────────────────────────
|
56 |
|
57 |
+
def tool_selector(state: AgentState) -> AgentState:
|
58 |
+
"""Ask the LLM what to do next (wiki / ocr / audio / excel / final)."""
|
59 |
+
if state.tool_calls >= MAX_TOOL_CALLS:
|
60 |
+
state.add(SystemMessage(content="You have reached the maximum number of tool calls. Use the already gathered information to answer the question."))
|
61 |
+
state.next_action = "final"
|
62 |
+
return state
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
prompt = SystemMessage(
|
65 |
+
content=(
|
66 |
+
"Reply with ONE JSON only (no markdown). Choices:\n"
|
67 |
+
" {'action':'wiki','query':'…'}\n"
|
68 |
+
" {'action':'ocr'}\n"
|
69 |
+
" {'action':'audio'}\n"
|
70 |
+
" {'action':'excel'}\n"
|
71 |
+
" {'action':'final'}\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
)
|
74 |
+
raw = LLM(state.messages + [prompt]).content.strip()
|
75 |
+
state.add(AIMessage(content=raw))
|
76 |
+
parsed = safe_json(raw)
|
77 |
+
if not parsed or "action" not in parsed:
|
78 |
+
state.next_action = "final"
|
79 |
+
return state
|
80 |
+
|
81 |
+
state.next_action = parsed["action"]
|
82 |
+
state.query = parsed.get("query")
|
83 |
+
return state
|
84 |
+
|
85 |
+
# ------------- tool adapters -------------
|
86 |
+
|
87 |
+
def wiki_tool(state: AgentState) -> AgentState:
|
88 |
+
out = wikipedia_search_tool({"wiki_query": state.query or ""})
|
89 |
+
state.tool_calls += 1
|
90 |
+
state.add(SystemMessage(content=f"WIKI_TOOL_OUT: {brief(out)}"))
|
91 |
+
state.next_action = None
|
92 |
+
return state
|
93 |
+
|
94 |
+
|
95 |
+
def ocr_tool(state: AgentState) -> AgentState:
|
96 |
+
out = ocr_image_tool({"task_id": state.task_id, "ocr_path": ""})
|
97 |
+
state.tool_calls += 1
|
98 |
+
state.add(SystemMessage(content=f"OCR_TOOL_OUT: {brief(out)}"))
|
99 |
+
state.next_action = None
|
100 |
+
return state
|
101 |
+
|
102 |
+
|
103 |
+
def audio_tool(state: AgentState) -> AgentState:
|
104 |
+
out = audio_transcriber_tool({"task_id": state.task_id, "audio_path": ""})
|
105 |
+
state.tool_calls += 1
|
106 |
+
state.add(SystemMessage(content=f"AUDIO_TOOL_OUT: {brief(out)}"))
|
107 |
+
state.next_action = None
|
108 |
+
return state
|
109 |
+
|
110 |
+
def excel_tool(state: AgentState) -> AgentState:
|
111 |
+
result = parse_excel_tool({
|
112 |
+
"task_id": state.task_id,
|
113 |
+
"excel_sheet_name": state.sheet or ""
|
114 |
+
})
|
115 |
+
out = {"excel_result": result}
|
116 |
+
state.tool_calls += 1
|
117 |
+
state.add(SystemMessage(content=f"EXCEL_TOOL_OUT: {brief(out)}"))
|
118 |
+
state.next_action = None
|
119 |
+
return state
|
120 |
+
|
121 |
+
|
122 |
+
# ------------- final answer -------------
|
123 |
+
|
124 |
+
def final_answer(state: AgentState) -> AgentState:
|
125 |
+
wrap = SystemMessage(
|
126 |
+
content="Using everything so far, reply ONLY with {'final_answer':'…'}. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."
|
127 |
+
)
|
128 |
+
raw = LLM(state.messages + [wrap]).content.strip()
|
129 |
+
state.add(AIMessage(content=raw))
|
130 |
+
parsed = safe_json(raw)
|
131 |
+
state.final_answer = parsed.get("final_answer") if parsed else "Unable to parse final answer."
|
132 |
+
return state
|
133 |
|
134 |
+
# ─────────────────────────── Graph wiring ───────────────────────────────
|
135 |
|
|
|
136 |
graph = StateGraph(AgentState)
|
137 |
|
138 |
# Register nodes
|
139 |
+
for name, fn in [
|
140 |
+
("tool_selector", tool_selector),
|
141 |
+
("wiki_tool", wiki_tool),
|
142 |
+
("ocr_tool", ocr_tool),
|
143 |
+
("audio_tool", audio_tool),
|
144 |
+
("final_answer", final_answer),
|
145 |
+
]:
|
146 |
+
graph.add_node(name, fn)
|
147 |
+
|
148 |
+
# Edges
|
149 |
+
graph.add_edge(START, "tool_selector")
|
150 |
+
|
151 |
+
def dispatch(state: AgentState) -> str:
|
152 |
+
return {
|
153 |
+
"wiki": "wiki_tool",
|
154 |
+
"ocr": "ocr_tool",
|
155 |
+
"audio": "audio_tool",
|
156 |
+
"final": "final_answer",
|
157 |
+
}.get(state.next_action, "final_answer")
|
158 |
|
159 |
graph.add_conditional_edges(
|
160 |
+
"tool_selector",
|
161 |
+
dispatch,
|
162 |
+
{
|
163 |
+
"wiki_tool": "wiki_tool",
|
164 |
+
"ocr_tool": "ocr_tool",
|
165 |
+
"audio_tool": "audio_tool",
|
166 |
+
"excel_tool": "excel_tool",
|
167 |
+
"final_answer": "final_answer",
|
168 |
+
},
|
169 |
)
|
170 |
|
171 |
+
# tools loop back to selector
|
172 |
+
for tool_name in ("wiki_tool", "ocr_tool", "audio_tool", "excel_tool"):
|
173 |
+
graph.add_edge(tool_name, "tool_selector")
|
174 |
|
175 |
+
# final_answer → END
|
176 |
+
graph.add_edge("final_answer", END)
|
177 |
+
|
178 |
+
compiled_graph = graph.compile()
|
179 |
+
|
180 |
+
# ─────────────────────────── Public API ────────────────────────────────
|
181 |
+
|
182 |
+
def answer(question: str, *, task_id: Optional[str] = None) -> str:
|
183 |
+
state = AgentState(user_question=question, task_id=task_id)
|
184 |
+
state.add(SystemMessage(content="You are a helpful assistant."))
|
185 |
+
state.add(HumanMessage(content=question))
|
186 |
+
compiled_graph.invoke(state)
|
187 |
+
return state.final_answer or "No answer."
|
188 |
|
|
|
|
|
189 |
|
|
|
|
|
|
|
|
|
|
|
190 |
|
|
|
|
|
|
|
|
|
|
|
191 |
|
|
|
|
|
192 |
|
|
|
193 |
|
194 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
|
|
|
|
|
|
197 |
|
198 |
class BasicAgent:
|
199 |
def __init__(self):
|
old2app.py
ADDED
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import requests
|
4 |
+
import inspect
|
5 |
+
import pandas as pd
|
6 |
+
from langgraph.prebuilt import ToolNode
|
7 |
+
|
8 |
+
|
9 |
+
# from typing import Any, Dict
|
10 |
+
# from typing import TypedDict, Annotated
|
11 |
+
|
12 |
+
from langchain_openai import ChatOpenAI
|
13 |
+
from langgraph.graph import StateGraph, START, END
|
14 |
+
from langgraph.graph.message import add_messages
|
15 |
+
from langchain.schema import HumanMessage, SystemMessage, AIMessage
|
16 |
+
# Create a ToolNode that knows about your web_search function
|
17 |
+
import json
|
18 |
+
from old2state import AgentState
|
19 |
+
|
20 |
+
# --- Constants ---
|
21 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
22 |
+
|
23 |
+
from old2tools import ocr_image_tool, parse_excel_tool, web_search_tool, run_tools, audio_transcriber_tool, wikipedia_search_tool
|
24 |
+
|
25 |
+
llm = ChatOpenAI(model_name="gpt-4.1")
|
26 |
+
|
27 |
+
# ─── 1) plan_node ───
|
28 |
+
# ─── 1) plan_node ───
|
29 |
+
tool_counter = 0
|
30 |
+
|
31 |
+
|
32 |
+
# ─── 1) plan_node ───
|
33 |
+
def plan_node(state: AgentState) -> AgentState:
|
34 |
+
"""
|
35 |
+
Step 1: Ask GPT to draft a concise direct answer (INTERIM_ANSWER),
|
36 |
+
then decide if it's confident enough to stop or if it needs one tool.
|
37 |
+
If confident: return {"final_answer":"<answer>"}
|
38 |
+
Otherwise: return exactly one of:
|
39 |
+
{"wiki_query":"..."},
|
40 |
+
{"ocr_path":"..."},
|
41 |
+
{"excel_path":"...","excel_sheet_name":"..."},
|
42 |
+
{"audio_path":"..."}
|
43 |
+
"""
|
44 |
+
prior_msgs = state.get("messages", [])
|
45 |
+
user_input = ""
|
46 |
+
for msg in reversed(prior_msgs):
|
47 |
+
if isinstance(msg, HumanMessage):
|
48 |
+
user_input = msg.content
|
49 |
+
break
|
50 |
+
|
51 |
+
system_msg = SystemMessage(
|
52 |
+
content=(
|
53 |
+
|
54 |
+
"You are an agent that must do two things in one JSON output:\n\n"
|
55 |
+
" 1) Provide a concise, direct answer to the user's question (no explanation).\n"
|
56 |
+
" 2) Judge whether that answer is reliable:\n"
|
57 |
+
" • If you are fully confident, return exactly:\n"
|
58 |
+
" {\"final_answer\":\"<your concise answer>\"}\n"
|
59 |
+
" and nothing else.\n"
|
60 |
+
" • Otherwise, return exactly one of:\n"
|
61 |
+
" {\"wiki_query\":\"<Wikipedia search>\"}\n"
|
62 |
+
" {\"ocr_path\":\"<image path or task_id>\"}\n"
|
63 |
+
" {\"excel_path\":\"<xlsx path>\", \"excel_sheet_name\":\"<sheet name>\"}\n"
|
64 |
+
" {\"audio_path\":\"<audio path or task_id>\"}\n"
|
65 |
+
" and nothing else.\n"
|
66 |
+
"Do NOT wrap in markdown—output only a single JSON object.\n"
|
67 |
+
f"User's question: \"{user_input}\"\n"
|
68 |
+
)
|
69 |
+
)
|
70 |
+
human_msg = HumanMessage(content=user_input)
|
71 |
+
llm_response = llm([system_msg, human_msg])
|
72 |
+
llm_out = llm_response.content.strip()
|
73 |
+
|
74 |
+
ai_msg = AIMessage(content=llm_out)
|
75 |
+
new_msgs = prior_msgs.copy() + [ai_msg]
|
76 |
+
|
77 |
+
try:
|
78 |
+
parsed = json.loads(llm_out)
|
79 |
+
if isinstance(parsed, dict):
|
80 |
+
partial: AgentState = {"messages": new_msgs}
|
81 |
+
allowed = {
|
82 |
+
"final_answer",
|
83 |
+
"wiki_query",
|
84 |
+
"ocr_path",
|
85 |
+
"excel_path",
|
86 |
+
"excel_sheet_name",
|
87 |
+
"audio_path",
|
88 |
+
}
|
89 |
+
for k, v in parsed.items():
|
90 |
+
if k in allowed:
|
91 |
+
partial[k] = v
|
92 |
+
return partial
|
93 |
+
except json.JSONDecodeError:
|
94 |
+
pass
|
95 |
+
|
96 |
+
return {
|
97 |
+
"messages": new_msgs,
|
98 |
+
"final_answer": "Sorry, I could not parse your intent.",
|
99 |
+
}
|
100 |
+
|
101 |
+
|
102 |
+
# ─── 2) store_prev_state ───
|
103 |
+
def store_prev_state(state: AgentState) -> AgentState:
|
104 |
+
return {**state, "prev_state": state.copy()}
|
105 |
+
|
106 |
+
|
107 |
+
# ─── 3) tools_node ───
|
108 |
+
def tool_node(state: AgentState) -> AgentState:
|
109 |
+
"""
|
110 |
+
Dispatch exactly one tool based on which key was set:
|
111 |
+
- wiki_query → wikipedia_search_tool
|
112 |
+
- ocr_path → ocr_image_tool
|
113 |
+
- excel_path → parse_excel_tool
|
114 |
+
- audio_path → audio_transcriber_tool
|
115 |
+
"""
|
116 |
+
global tool_counter
|
117 |
+
if tool_counter >= 5:
|
118 |
+
# If we've already run 5 tools, do nothing
|
119 |
+
return {
|
120 |
+
"messages": state["messages"],
|
121 |
+
"final_answer": state.get("final_answer", "No interim answer available.")
|
122 |
+
}
|
123 |
+
|
124 |
+
tool_counter += 1
|
125 |
+
|
126 |
+
if state.get("wiki_query"):
|
127 |
+
return wikipedia_search_tool(state)
|
128 |
+
if state.get("ocr_path"):
|
129 |
+
return ocr_image_tool(state)
|
130 |
+
if state.get("excel_path"):
|
131 |
+
return parse_excel_tool(state)
|
132 |
+
if state.get("audio_path"):
|
133 |
+
return audio_transcriber_tool(state)
|
134 |
+
|
135 |
+
return {} # no tool key present
|
136 |
+
|
137 |
+
|
138 |
+
# ─── 4) merge_tool_output ───
|
139 |
+
def merge_tool_output(state: AgentState) -> AgentState:
|
140 |
+
"""
|
141 |
+
Combine previous state and tool output into one, but remove any stale request-keys.
|
142 |
+
"""
|
143 |
+
prev = state.get("prev_state", {}).copy()
|
144 |
+
|
145 |
+
# Drop stale request-keys in prev
|
146 |
+
for dead in ["wiki_query", "ocr_path", "excel_path", "excel_sheet_name", "audio_path"]:
|
147 |
+
prev.pop(dead, None)
|
148 |
+
|
149 |
+
merged = {**prev, **state}
|
150 |
+
# Drop them again from merged so they don't persist into the next cycle
|
151 |
+
for dead in ["wiki_query", "ocr_path", "excel_path", "excel_sheet_name", "audio_path"]:
|
152 |
+
merged.pop(dead, None)
|
153 |
+
|
154 |
+
merged.pop("prev_state", None)
|
155 |
+
return merged
|
156 |
+
|
157 |
+
|
158 |
+
# ─── 5) inspect_node ───
|
159 |
+
def inspect_node(state: AgentState) -> AgentState:
|
160 |
+
"""
|
161 |
+
After running a tool, show GPT:
|
162 |
+
- ORIGINAL user question
|
163 |
+
- Any tool results (web_search_result, ocr_result, excel_result, transcript, wiki_result)
|
164 |
+
- The INTERIM_ANSWER (always present if plan_node ran correctly)
|
165 |
+
|
166 |
+
If tool_counter ≥ 5, use LLM once more (with full context) to craft a final answer.
|
167 |
+
Otherwise, ask GPT to either:
|
168 |
+
• Return {"final_answer":"<final>"} if done, OR
|
169 |
+
• Return exactly one tool key to run next (wiki_query / ocr_path / excel_path & excel_sheet_name / audio_path).
|
170 |
+
"""
|
171 |
+
|
172 |
+
global tool_counter
|
173 |
+
|
174 |
+
# If we've already run 5 tools, ask GPT for a strictly‐formatted JSON final_answer
|
175 |
+
if tool_counter >= 5:
|
176 |
+
messages_for_llm = []
|
177 |
+
|
178 |
+
# Re‐insert the user’s question
|
179 |
+
question = ""
|
180 |
+
for msg in reversed(state.get("messages", [])):
|
181 |
+
if isinstance(msg, HumanMessage):
|
182 |
+
question = msg.content
|
183 |
+
break
|
184 |
+
messages_for_llm.append(SystemMessage(content=f"USER_QUESTION: {question}"))
|
185 |
+
|
186 |
+
# Add any tool results so far
|
187 |
+
if sr := state.get("web_search_result"):
|
188 |
+
messages_for_llm.append(SystemMessage(content=f"WEB_SEARCH_RESULT: {sr}"))
|
189 |
+
if orc := state.get("ocr_result"):
|
190 |
+
messages_for_llm.append(SystemMessage(content=f"OCR_RESULT: {orc}"))
|
191 |
+
if exr := state.get("excel_result"):
|
192 |
+
messages_for_llm.append(SystemMessage(content=f"EXCEL_RESULT: {exr}"))
|
193 |
+
if tr := state.get("transcript"):
|
194 |
+
messages_for_llm.append(SystemMessage(content=f"AUDIO_TRANSCRIPT: {tr}"))
|
195 |
+
if wr := state.get("wiki_result"):
|
196 |
+
messages_for_llm.append(SystemMessage(content=f"WIKIPEDIA_RESULT: {wr}"))
|
197 |
+
|
198 |
+
# Show the interim answer
|
199 |
+
interim = state.get("interim_answer", "")
|
200 |
+
messages_for_llm.append(SystemMessage(content=f"INTERIM_ANSWER: {interim}"))
|
201 |
+
|
202 |
+
# Now ask for JSON ONLY (no reasoning, no extra text)
|
203 |
+
final_prompt = (
|
204 |
+
"Finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."
|
205 |
+
"Using only the information above—including the USER_QUESTION, "
|
206 |
+
"any TOOL_RESULT, and the INTERIM_ANSWER—produce a concise final answer. "
|
207 |
+
"Return exactly one JSON object and nothing else, in this format:\n\n"
|
208 |
+
"{\"final_answer\":\"<your final answer>\"}\n"
|
209 |
+
"Do not include any other words or punctuation outside that JSON. if its numbers, dont show the units"
|
210 |
+
)
|
211 |
+
messages_for_llm.append(SystemMessage(content=final_prompt))
|
212 |
+
|
213 |
+
llm_response = llm(messages_for_llm)
|
214 |
+
raw = llm_response.content.strip()
|
215 |
+
new_msgs = state["messages"] + [AIMessage(content=raw)]
|
216 |
+
|
217 |
+
# Try to parse exactly one JSON with "final_answer"
|
218 |
+
try:
|
219 |
+
parsed = json.loads(raw)
|
220 |
+
if isinstance(parsed, dict) and "final_answer" in parsed:
|
221 |
+
return {"messages": new_msgs, "final_answer": parsed["final_answer"]}
|
222 |
+
except json.JSONDecodeError:
|
223 |
+
pass
|
224 |
+
|
225 |
+
# Fallback to returning the interim in case JSON parse fails
|
226 |
+
return {"messages": new_msgs, "final_answer": interim}
|
227 |
+
# ——————————— If tool_counter < 5, proceed as before ———————————
|
228 |
+
messages_for_llm = []
|
229 |
+
|
230 |
+
# (1) Re‐insert original user question
|
231 |
+
question = ""
|
232 |
+
for msg in reversed(state.get("messages", [])):
|
233 |
+
if isinstance(msg, HumanMessage):
|
234 |
+
question = msg.content
|
235 |
+
break
|
236 |
+
messages_for_llm.append(SystemMessage(content=f"USER_QUESTION: {question}"))
|
237 |
+
|
238 |
+
# (2) Add any tool results
|
239 |
+
if sr := state.get("web_search_result"):
|
240 |
+
messages_for_llm.append(SystemMessage(content=f"WEB_SEARCH_RESULT: {sr}"))
|
241 |
+
if orc := state.get("ocr_result"):
|
242 |
+
messages_for_llm.append(SystemMessage(content=f"OCR_RESULT: {orc}"))
|
243 |
+
if exr := state.get("excel_result"):
|
244 |
+
messages_for_llm.append(SystemMessage(content=f"EXCEL_RESULT: {exr}"))
|
245 |
+
if tr := state.get("transcript"):
|
246 |
+
messages_for_llm.append(SystemMessage(content=f"AUDIO_TRANSCRIPT: {tr}"))
|
247 |
+
if wr := state.get("wiki_result"):
|
248 |
+
messages_for_llm.append(SystemMessage(content=f"WIKIPEDIA_RESULT: {wr}"))
|
249 |
+
|
250 |
+
# (3) Always show the interim answer
|
251 |
+
interim = state.get("interim_answer", "")
|
252 |
+
messages_for_llm.append(SystemMessage(content=f"INTERIM_ANSWER: {interim}"))
|
253 |
+
|
254 |
+
# (4) Prompt GPT to decide final or another tool
|
255 |
+
prompt = (
|
256 |
+
"You have a current draft answer (INTERIM_ANSWER) and possibly some tool results above.\n"
|
257 |
+
"If you are confident it’s correct, return exactly:\n"
|
258 |
+
" {\"final_answer\":\"<your final answer>\"}\n"
|
259 |
+
"and nothing else.\n"
|
260 |
+
"Otherwise, return exactly one of these JSON literals to fetch another tool:\n"
|
261 |
+
" {\"wiki_query\":\"<query for Wikipedia>\"}\n"
|
262 |
+
" {\"ocr_path\":\"<image path or task_id>\"}\n"
|
263 |
+
" {\"excel_path\":\"<xls path>\", \"excel_sheet_name\":\"<sheet name>\"}\n"
|
264 |
+
" {\"audio_path\":\"<audio path or task_id>\"}\n"
|
265 |
+
"Do NOT wrap in markdown—return only the JSON object.\n"
|
266 |
+
)
|
267 |
+
messages_for_llm.append(SystemMessage(content=prompt))
|
268 |
+
llm_response = llm(messages_for_llm)
|
269 |
+
raw = llm_response.content.strip()
|
270 |
+
new_msgs = state["messages"] + [AIMessage(content=raw)]
|
271 |
+
|
272 |
+
# Try to parse the LLM’s JSON
|
273 |
+
try:
|
274 |
+
parsed = json.loads(raw)
|
275 |
+
if isinstance(parsed, dict):
|
276 |
+
# (a) If GPT gave a final_answer, return immediately
|
277 |
+
if "final_answer" in parsed:
|
278 |
+
return {"messages": new_msgs, "final_answer": parsed["final_answer"]}
|
279 |
+
|
280 |
+
# (b) If GPT requested exactly one valid tool, return only that key
|
281 |
+
valid_keys = {"wiki_query", "ocr_path", "excel_path", "excel_sheet_name", "audio_path"}
|
282 |
+
requested_keys = set(parsed.keys()) & valid_keys
|
283 |
+
if len(requested_keys) == 1:
|
284 |
+
clean: AgentState = {"messages": new_msgs}
|
285 |
+
for k in requested_keys:
|
286 |
+
clean[k] = parsed[k]
|
287 |
+
return clean
|
288 |
+
except json.JSONDecodeError:
|
289 |
+
pass
|
290 |
+
|
291 |
+
# (c) Fallback: if GPT never returned a valid tool key or a final_answer,
|
292 |
+
# just finalize with the existing interim_answer
|
293 |
+
return {"messages": new_msgs, "final_answer": interim}
|
294 |
+
|
295 |
+
|
296 |
+
# ─── 6) finalize_node ───
|
297 |
+
def finalize_node(state: AgentState) -> AgentState:
|
298 |
+
"""
|
299 |
+
If state already has "final_answer", return it. Otherwise, it's an error.
|
300 |
+
"""
|
301 |
+
if fa := state.get("final_answer"):
|
302 |
+
return {"final_answer": fa}
|
303 |
+
return {"final_answer": "ERROR: finalize called without a final_answer."}
|
304 |
+
|
305 |
+
|
306 |
+
# ─── 7) Build the graph and wire edges ───
|
307 |
+
graph = StateGraph(AgentState)
|
308 |
+
|
309 |
+
# Register nodes
|
310 |
+
graph.add_node("plan", plan_node)
|
311 |
+
graph.add_node("store_prev_state", store_prev_state)
|
312 |
+
graph.add_node("tools", tool_node)
|
313 |
+
graph.add_node("merge_tool_output", merge_tool_output)
|
314 |
+
graph.add_node("inspect", inspect_node)
|
315 |
+
graph.add_node("finalize", finalize_node)
|
316 |
+
|
317 |
+
# START → plan
|
318 |
+
graph.add_edge(START, "plan")
|
319 |
+
|
320 |
+
# plan → either finalize (if plan set final_answer) or store_prev_state (if plan wants a tool)
|
321 |
+
def route_plan(plan_out: AgentState) -> str:
|
322 |
+
if plan_out.get("final_answer") is not None:
|
323 |
+
return "finalize"
|
324 |
+
return "store_prev_state"
|
325 |
+
|
326 |
+
graph.add_conditional_edges(
|
327 |
+
"plan",
|
328 |
+
route_plan,
|
329 |
+
{"store_prev_state": "store_prev_state", "finalize": "finalize"},
|
330 |
+
)
|
331 |
+
|
332 |
+
# store_prev_state → tools
|
333 |
+
graph.add_edge("store_prev_state", "tools")
|
334 |
+
|
335 |
+
# tools → merge_tool_output
|
336 |
+
graph.add_edge("tools", "merge_tool_output")
|
337 |
+
|
338 |
+
# merge_tool_output → inspect
|
339 |
+
graph.add_edge("merge_tool_output", "inspect")
|
340 |
+
|
341 |
+
# inspect → either finalize (if inspect set final_answer) or store_prev_state (if inspect wants another tool)
|
342 |
+
def route_inspect(inspect_out: AgentState) -> str:
|
343 |
+
if inspect_out.get("final_answer") is not None:
|
344 |
+
return "finalize"
|
345 |
+
return "store_prev_state"
|
346 |
+
|
347 |
+
graph.add_conditional_edges(
|
348 |
+
"inspect",
|
349 |
+
route_inspect,
|
350 |
+
{"store_prev_state": "store_prev_state", "finalize": "finalize"},
|
351 |
+
)
|
352 |
+
|
353 |
+
# finalize → END
|
354 |
+
graph.add_edge("finalize", END)
|
355 |
+
|
356 |
+
compiled_graph = graph.compile()
|
357 |
+
|
358 |
+
|
359 |
+
# ─── 8) respond_to_input ───
|
360 |
+
def respond_to_input(user_input: str, task_id) -> str:
|
361 |
+
"""
|
362 |
+
Reset the global tool_counter, seed state['messages'], invoke the graph,
|
363 |
+
and return the final_answer.
|
364 |
+
"""
|
365 |
+
global tool_counter
|
366 |
+
tool_counter = 0 # Reset on every new user query
|
367 |
+
|
368 |
+
system_msg = SystemMessage(
|
369 |
+
content=(
|
370 |
+
"You are an agent orchestrator. Decide whether to use a tool or answer directly.\n"
|
371 |
+
"Try not to use tools so many times. If you think you can answer the question without using a tool, do it Please.\n"
|
372 |
+
"Tools available:\n"
|
373 |
+
" • Wikipedia: set {\"wiki_query\":\"<search terms>\"}\n"
|
374 |
+
" • OCR: set {\"ocr_path\":\"<image path or task_id>\"}\n"
|
375 |
+
" • Excel: set {\"excel_path\":\"<xlsx path>\", \"excel_sheet_name\":\"<sheet>\"}\n"
|
376 |
+
" • Audio transcription: set {\"audio_path\":\"<audio path or task_id>\"}\n"
|
377 |
+
"If you can answer immediately, set {\"final_answer\":\"<answer>\"}. "
|
378 |
+
"Respond with only one JSON object and no extra formatting."
|
379 |
+
)
|
380 |
+
)
|
381 |
+
human_msg = HumanMessage(content=user_input)
|
382 |
+
|
383 |
+
initial_state: AgentState = {"messages": [system_msg, human_msg], "task_id": task_id}
|
384 |
+
final_state = compiled_graph.invoke(initial_state)
|
385 |
+
return final_state.get("final_answer", "Error: No final answer generated.")
|
386 |
+
|
387 |
+
class BasicAgent:
|
388 |
+
def __init__(self):
|
389 |
+
print("BasicAgent initialized.")
|
390 |
+
def __call__(self, question: str, task_id) -> str:
|
391 |
+
# print(f"Agent received question (first 50 chars): {question[:50]}...")
|
392 |
+
# fixed_answer = "This is a default answer."
|
393 |
+
# print(f"Agent returning fixed answer: {fixed_answer}")
|
394 |
+
print()
|
395 |
+
print()
|
396 |
+
print()
|
397 |
+
print()
|
398 |
+
|
399 |
+
|
400 |
+
print(f"Agent received question: {question}")
|
401 |
+
print()
|
402 |
+
return respond_to_input(question, task_id)
|
403 |
+
# return fixed_answer
|
404 |
+
|
405 |
+
|
406 |
+
|
407 |
+
|
408 |
+
|
409 |
+
|
410 |
+
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
411 |
+
"""
|
412 |
+
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
413 |
+
and displays the results.
|
414 |
+
"""
|
415 |
+
# --- Determine HF Space Runtime URL and Repo URL ---
|
416 |
+
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
417 |
+
|
418 |
+
if profile:
|
419 |
+
username= f"{profile.username}"
|
420 |
+
print(f"User logged in: {username}")
|
421 |
+
else:
|
422 |
+
print("User not logged in.")
|
423 |
+
return "Please Login to Hugging Face with the button.", None
|
424 |
+
|
425 |
+
api_url = DEFAULT_API_URL
|
426 |
+
questions_url = f"{api_url}/questions"
|
427 |
+
submit_url = f"{api_url}/submit"
|
428 |
+
|
429 |
+
# 1. Instantiate Agent ( modify this part to create your agent)
|
430 |
+
try:
|
431 |
+
agent = BasicAgent()
|
432 |
+
except Exception as e:
|
433 |
+
print(f"Error instantiating agent: {e}")
|
434 |
+
return f"Error initializing agent: {e}", None
|
435 |
+
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
436 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
437 |
+
print(agent_code)
|
438 |
+
|
439 |
+
# 2. Fetch Questions
|
440 |
+
print(f"Fetching questions from: {questions_url}")
|
441 |
+
try:
|
442 |
+
response = requests.get(questions_url, timeout=15)
|
443 |
+
response.raise_for_status()
|
444 |
+
questions_data = response.json()
|
445 |
+
if not questions_data:
|
446 |
+
print("Fetched questions list is empty.")
|
447 |
+
return "Fetched questions list is empty or invalid format.", None
|
448 |
+
print(f"Fetched {len(questions_data)} questions.")
|
449 |
+
except requests.exceptions.RequestException as e:
|
450 |
+
print(f"Error fetching questions: {e}")
|
451 |
+
return f"Error fetching questions: {e}", None
|
452 |
+
except requests.exceptions.JSONDecodeError as e:
|
453 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
454 |
+
print(f"Response text: {response.text[:500]}")
|
455 |
+
return f"Error decoding server response for questions: {e}", None
|
456 |
+
except Exception as e:
|
457 |
+
print(f"An unexpected error occurred fetching questions: {e}")
|
458 |
+
return f"An unexpected error occurred fetching questions: {e}", None
|
459 |
+
|
460 |
+
# 3. Run your Agent
|
461 |
+
|
462 |
+
results_log = []
|
463 |
+
answers_payload = []
|
464 |
+
print(f"Running agent on {len(questions_data)} questions...")
|
465 |
+
for item in questions_data:
|
466 |
+
task_id = item.get("task_id")
|
467 |
+
question_text = item.get("question")
|
468 |
+
if not task_id or question_text is None:
|
469 |
+
print(f"Skipping item with missing task_id or question: {item}")
|
470 |
+
continue
|
471 |
+
try:
|
472 |
+
submitted_answer = agent(question_text, task_id)
|
473 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
474 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
475 |
+
except Exception as e:
|
476 |
+
print(f"Error running agent on task {task_id}: {e}")
|
477 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
478 |
+
|
479 |
+
if not answers_payload:
|
480 |
+
print("Agent did not produce any answers to submit.")
|
481 |
+
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
482 |
+
|
483 |
+
# 4. Prepare Submission
|
484 |
+
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
485 |
+
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
486 |
+
print(status_update)
|
487 |
+
|
488 |
+
# 5. Submit
|
489 |
+
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
490 |
+
try:
|
491 |
+
response = requests.post(submit_url, json=submission_data, timeout=60)
|
492 |
+
response.raise_for_status()
|
493 |
+
result_data = response.json()
|
494 |
+
final_status = (
|
495 |
+
f"Submission Successful!\n"
|
496 |
+
f"User: {result_data.get('username')}\n"
|
497 |
+
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
498 |
+
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
499 |
+
f"Message: {result_data.get('message', 'No message received.')}"
|
500 |
+
)
|
501 |
+
print("Submission successful.")
|
502 |
+
results_df = pd.DataFrame(results_log)
|
503 |
+
return final_status, results_df
|
504 |
+
except requests.exceptions.HTTPError as e:
|
505 |
+
error_detail = f"Server responded with status {e.response.status_code}."
|
506 |
+
try:
|
507 |
+
error_json = e.response.json()
|
508 |
+
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
509 |
+
except requests.exceptions.JSONDecodeError:
|
510 |
+
error_detail += f" Response: {e.response.text[:500]}"
|
511 |
+
status_message = f"Submission Failed: {error_detail}"
|
512 |
+
print(status_message)
|
513 |
+
results_df = pd.DataFrame(results_log)
|
514 |
+
return status_message, results_df
|
515 |
+
except requests.exceptions.Timeout:
|
516 |
+
status_message = "Submission Failed: The request timed out."
|
517 |
+
print(status_message)
|
518 |
+
results_df = pd.DataFrame(results_log)
|
519 |
+
return status_message, results_df
|
520 |
+
except requests.exceptions.RequestException as e:
|
521 |
+
status_message = f"Submission Failed: Network error - {e}"
|
522 |
+
print(status_message)
|
523 |
+
results_df = pd.DataFrame(results_log)
|
524 |
+
return status_message, results_df
|
525 |
+
except Exception as e:
|
526 |
+
status_message = f"An unexpected error occurred during submission: {e}"
|
527 |
+
print(status_message)
|
528 |
+
results_df = pd.DataFrame(results_log)
|
529 |
+
return status_message, results_df
|
530 |
+
|
531 |
+
|
532 |
+
# --- Build Gradio Interface using Blocks ---
|
533 |
+
with gr.Blocks() as demo:
|
534 |
+
gr.Markdown("# Basic Agent Evaluation Runner")
|
535 |
+
gr.Markdown(
|
536 |
+
"""
|
537 |
+
**Instructions:**
|
538 |
+
|
539 |
+
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
540 |
+
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
541 |
+
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
542 |
+
|
543 |
+
---
|
544 |
+
**Disclaimers:**
|
545 |
+
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
546 |
+
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
547 |
+
"""
|
548 |
+
)
|
549 |
+
|
550 |
+
gr.LoginButton()
|
551 |
+
|
552 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
553 |
+
|
554 |
+
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
555 |
+
# Removed max_rows=10 from DataFrame constructor
|
556 |
+
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
557 |
+
|
558 |
+
run_button.click(
|
559 |
+
fn=run_and_submit_all,
|
560 |
+
outputs=[status_output, results_table]
|
561 |
+
)
|
562 |
+
|
563 |
+
if __name__ == "__main__":
|
564 |
+
# print("LangGraph version:", langgraph.__version__)
|
565 |
+
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
566 |
+
# Check for SPACE_HOST and SPACE_ID at startup for information
|
567 |
+
space_host_startup = os.getenv("SPACE_HOST")
|
568 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
569 |
+
# import langgraph
|
570 |
+
# print("▶︎ LangGraph version:", langgraph.__version__)
|
571 |
+
if space_host_startup:
|
572 |
+
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
573 |
+
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
574 |
+
else:
|
575 |
+
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
576 |
+
|
577 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
578 |
+
print(f"✅ SPACE_ID found: {space_id_startup}")
|
579 |
+
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
580 |
+
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
581 |
+
else:
|
582 |
+
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
583 |
+
|
584 |
+
print("-"*(60 + len(" App Starting ")) + "\n")
|
585 |
+
|
586 |
+
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
587 |
+
demo.launch(debug=True, share=False)
|
old2state.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing_extensions import TypedDict
|
2 |
+
from typing import Annotated
|
3 |
+
from langgraph.graph.message import add_messages
|
4 |
+
|
5 |
+
class AgentState(TypedDict, total=False):
|
6 |
+
messages: Annotated[list, add_messages]
|
7 |
+
web_search_query: str
|
8 |
+
ocr_path: str
|
9 |
+
excel_path: str
|
10 |
+
excel_sheet_name: str
|
11 |
+
web_search_result: str
|
12 |
+
ocr_result: str
|
13 |
+
excel_result: str
|
14 |
+
final_answer: str
|
15 |
+
user_input: str
|
16 |
+
audio_path: str
|
17 |
+
transcript: str
|
18 |
+
audio_transcript: str
|
19 |
+
wiki_query: str
|
20 |
+
wiki_result: str
|
21 |
+
task_id: str
|
22 |
+
tool_counter: int
|
old2tools.py
ADDED
@@ -0,0 +1,422 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# tools.py
|
2 |
+
|
3 |
+
import pandas as pd
|
4 |
+
# from langchain_community.tools import DuckDuckGoSearchRun
|
5 |
+
from pathlib import Path
|
6 |
+
# from PIL import Image
|
7 |
+
# import pytesseract
|
8 |
+
from old2state import AgentState
|
9 |
+
from langchain.schema import HumanMessage
|
10 |
+
import regex as re
|
11 |
+
import time
|
12 |
+
from duckduckgo_search import DDGS
|
13 |
+
|
14 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
15 |
+
|
16 |
+
|
17 |
+
def _download_file_for_task(task_id: str, ext: str) -> str:
|
18 |
+
"""
|
19 |
+
Helper: attempt to GET the remote file for a given task_id.
|
20 |
+
Saves under ./hf_files/{task_id}.{ext}. Returns the local path if successful,
|
21 |
+
or an empty string if no file / download failed.
|
22 |
+
"""
|
23 |
+
|
24 |
+
print("reached _download_file_for_task")
|
25 |
+
os.makedirs("hf_files", exist_ok=True)
|
26 |
+
local_path = os.path.join("hf_files", f"{task_id}.{ext}")
|
27 |
+
url = f"{DEFAULT_API_URL}/files/{task_id}"
|
28 |
+
|
29 |
+
try:
|
30 |
+
resp = requests.get(url, timeout=10)
|
31 |
+
if resp.status_code == 200 and resp.content:
|
32 |
+
print(f"Downloaded file from {url} to {local_path}")
|
33 |
+
with open(local_path, "wb") as f:
|
34 |
+
f.write(resp.content)
|
35 |
+
return local_path
|
36 |
+
except Exception:
|
37 |
+
pass
|
38 |
+
|
39 |
+
# If we get here, either 404 or download error
|
40 |
+
return ""
|
41 |
+
|
42 |
+
|
43 |
+
def web_search_tool(state: AgentState) -> AgentState:
|
44 |
+
"""
|
45 |
+
Expects: state["web_search_query"] is a non‐empty string.
|
46 |
+
Returns: {"web_search_query": None, "web_search_result": <string>}.
|
47 |
+
Retries up to 5 times on either a DuckDuckGo “202 Ratelimit” response or any exception (e.g. timeout).
|
48 |
+
"""
|
49 |
+
print("reached web_search_tool")
|
50 |
+
query = state.get("web_search_query", "")
|
51 |
+
if not query:
|
52 |
+
return {} # nothing to do
|
53 |
+
|
54 |
+
ddg = DDGS()
|
55 |
+
max_retries = 5
|
56 |
+
result_text = ""
|
57 |
+
|
58 |
+
for attempt in range(1, max_retries + 1):
|
59 |
+
try:
|
60 |
+
result_text = str(ddg.text(query, max_results=5))
|
61 |
+
except Exception as e:
|
62 |
+
# Network error or timeout—retry up to max_retries
|
63 |
+
if attempt < max_retries:
|
64 |
+
print(f"web_search_tool: exception '{e}', retrying in 4 seconds ({attempt}/{max_retries})")
|
65 |
+
time.sleep(4)
|
66 |
+
continue
|
67 |
+
else:
|
68 |
+
# Final attempt failed
|
69 |
+
return {
|
70 |
+
"web_search_query": None,
|
71 |
+
"web_search_result": f"Error during DuckDuckGo search: {e}"
|
72 |
+
}
|
73 |
+
|
74 |
+
# Check for DuckDuckGo rate‐limit indicator
|
75 |
+
if "202 Ratelimit" in result_text:
|
76 |
+
if attempt < max_retries:
|
77 |
+
print(f"web_search_tool: received '202 Ratelimit', retrying in 4 seconds ({attempt}/{max_retries})")
|
78 |
+
time.sleep(4)
|
79 |
+
continue
|
80 |
+
else:
|
81 |
+
# Final attempt still rate‐limited
|
82 |
+
break
|
83 |
+
|
84 |
+
# Successful response (no exception and no rate‐limit text)
|
85 |
+
break
|
86 |
+
|
87 |
+
return {
|
88 |
+
"web_search_query": None,
|
89 |
+
"web_search_result": result_text
|
90 |
+
}
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
def ocr_image_tool(state: AgentState) -> AgentState:
|
95 |
+
"""
|
96 |
+
Expects: state["ocr_path"] is either:
|
97 |
+
• a local image path (e.g. "./hf_files/abc.png"), OR
|
98 |
+
• a Task ID (e.g. "abc123"), in which case we try downloading
|
99 |
+
GET {DEFAULT_API_URL}/files/{task_id} with .png/.jpg/.jpeg extensions.
|
100 |
+
|
101 |
+
Returns:
|
102 |
+
{
|
103 |
+
"ocr_path": None,
|
104 |
+
"ocr_result": "<OCR text + brief caption or an error message>"
|
105 |
+
}
|
106 |
+
"""
|
107 |
+
print("reached ocr_image_tool")
|
108 |
+
path_or_id = state.get("ocr_path", "")
|
109 |
+
# if not path_or_id:
|
110 |
+
# return {}
|
111 |
+
|
112 |
+
# 1) Determine local_img: either existing path_or_id or download by Task ID
|
113 |
+
# local_img = ""
|
114 |
+
# if os.path.exists(path_or_id):
|
115 |
+
# local_img = path_or_id
|
116 |
+
# else:
|
117 |
+
for ext in ("png", "jpg", "jpeg"):
|
118 |
+
candidate = _download_file_for_task(state.get("task_id"), ext)
|
119 |
+
if candidate:
|
120 |
+
local_img = candidate
|
121 |
+
break
|
122 |
+
|
123 |
+
if not local_img or not os.path.exists(local_img):
|
124 |
+
return {
|
125 |
+
"ocr_path": None,
|
126 |
+
"ocr_result": "Error: No image file found (local nonexistent or download failed)."
|
127 |
+
}
|
128 |
+
|
129 |
+
# 2) Read raw bytes
|
130 |
+
try:
|
131 |
+
with open(local_img, "rb") as f:
|
132 |
+
image_bytes = f.read()
|
133 |
+
except Exception as e:
|
134 |
+
return {
|
135 |
+
"ocr_path": None,
|
136 |
+
"ocr_result": f"Error reading image file: {e}"
|
137 |
+
}
|
138 |
+
|
139 |
+
# 3) Prepare HF Inference headers
|
140 |
+
hf_token = os.getenv("HF_TOKEN")
|
141 |
+
if not hf_token:
|
142 |
+
return {
|
143 |
+
"ocr_path": None,
|
144 |
+
"ocr_result": "Error: HUGGINGFACE_API_KEY not set in environment."
|
145 |
+
}
|
146 |
+
|
147 |
+
headers = {"Authorization": f"Bearer {hf_token}"}
|
148 |
+
|
149 |
+
# 4) Call HF’s vision-ocr to extract text
|
150 |
+
ocr_text = ""
|
151 |
+
try:
|
152 |
+
ocr_resp = requests.post(
|
153 |
+
"https://api-inference.huggingface.co/models/google/vit-ocr",
|
154 |
+
headers=headers,
|
155 |
+
files={"file": image_bytes},
|
156 |
+
timeout=30
|
157 |
+
)
|
158 |
+
ocr_resp.raise_for_status()
|
159 |
+
ocr_json = ocr_resp.json()
|
160 |
+
|
161 |
+
# The JSON has “pages” → list of blocks → “lines” → each line has “text”
|
162 |
+
lines = []
|
163 |
+
for page in ocr_json.get("pages", []):
|
164 |
+
for line in page.get("lines", []):
|
165 |
+
lines.append(line.get("text", "").strip())
|
166 |
+
ocr_text = "\n".join(lines).strip() or "(no visible text)"
|
167 |
+
except Exception as e:
|
168 |
+
ocr_text = f"Error during HF OCR: {e}"
|
169 |
+
|
170 |
+
# 5) Call HF’s image-captioning to get a brief description
|
171 |
+
caption = ""
|
172 |
+
try:
|
173 |
+
cap_resp = requests.post(
|
174 |
+
"https://api-inference.huggingface.co/models/Salesforce/blip-image-captioning-base",
|
175 |
+
headers=headers,
|
176 |
+
files={"file": image_bytes},
|
177 |
+
timeout=30
|
178 |
+
)
|
179 |
+
cap_resp.raise_for_status()
|
180 |
+
cap_json = cap_resp.json()
|
181 |
+
# The response looks like: {"generated_text": "...caption..."}
|
182 |
+
caption = cap_json.get("generated_text", "").strip()
|
183 |
+
if not caption:
|
184 |
+
caption = "(no caption returned)"
|
185 |
+
except Exception as e:
|
186 |
+
caption = f"Error during HF captioning: {e}"
|
187 |
+
|
188 |
+
# 6) Combine OCR + caption
|
189 |
+
combined = f"OCR text:\n{ocr_text}\n\nImage caption:\n{caption}"
|
190 |
+
print("combined: ")
|
191 |
+
return {
|
192 |
+
"ocr_path": None,
|
193 |
+
"ocr_result": combined
|
194 |
+
}
|
195 |
+
|
196 |
+
def parse_excel_tool(state: AgentState) -> AgentState:
|
197 |
+
"""
|
198 |
+
Expects state["excel_path"] to be either:
|
199 |
+
• A real local .xlsx path, or
|
200 |
+
• A Task ID string (e.g. "abc123"), in which case we GET /files/abc123.xlsx.
|
201 |
+
Returns:
|
202 |
+
{
|
203 |
+
"excel_path": None,
|
204 |
+
"excel_sheet_name": None,
|
205 |
+
"excel_result": "<stringified records or Markdown table>"
|
206 |
+
}
|
207 |
+
Always attempts to download the file for the given path or task ID.
|
208 |
+
"""
|
209 |
+
print("reached parse_excel_tool")
|
210 |
+
local_xlsx = _download_file_for_task(state.get("task_id"), "xlsx")
|
211 |
+
path_or_id = state.get("excel_path", "")
|
212 |
+
sheet = state.get("excel_sheet_name", "")
|
213 |
+
if not path_or_id:
|
214 |
+
return {}
|
215 |
+
|
216 |
+
# Always attempt to download the file, regardless of local existence
|
217 |
+
|
218 |
+
|
219 |
+
# If we finally have a real file, read it
|
220 |
+
if local_xlsx and os.path.exists(local_xlsx):
|
221 |
+
try:
|
222 |
+
print("reached excel file found")
|
223 |
+
xls = pd.ExcelFile(local_xlsx)
|
224 |
+
if sheet and sheet in xls.sheet_names:
|
225 |
+
df = pd.read_excel(xls, sheet_name=sheet)
|
226 |
+
else:
|
227 |
+
df = pd.read_excel(xls, sheet_name=xls.sheet_names[0])
|
228 |
+
records = df.to_dict(orient="records")
|
229 |
+
text = str(records)
|
230 |
+
print("reached excel file found: ")
|
231 |
+
print(text)
|
232 |
+
print()
|
233 |
+
return {
|
234 |
+
"excel_path": None,
|
235 |
+
"excel_sheet_name": None,
|
236 |
+
"excel_result": text
|
237 |
+
}
|
238 |
+
except Exception as e:
|
239 |
+
print(f">>> parse_excel_tool: Error reading Excel file {local_xlsx}: {e}")
|
240 |
+
# Fall back to scanning for Markdown below
|
241 |
+
|
242 |
+
# Fallback: scan any HumanMessage for a Markdown‐style table
|
243 |
+
messages = state.get("messages", [])
|
244 |
+
table_lines = []
|
245 |
+
collecting = False
|
246 |
+
|
247 |
+
for msg in messages:
|
248 |
+
if isinstance(msg, HumanMessage):
|
249 |
+
for line in msg.content.splitlines():
|
250 |
+
if re.match(r"^\s*\|\s*[-A-Za-z0-9]", line):
|
251 |
+
collecting = True
|
252 |
+
if collecting:
|
253 |
+
if not re.match(r"^\s*\|", line):
|
254 |
+
collecting = False
|
255 |
+
break
|
256 |
+
table_lines.append(line)
|
257 |
+
if table_lines:
|
258 |
+
break
|
259 |
+
|
260 |
+
if not table_lines:
|
261 |
+
return {
|
262 |
+
"excel_path": None,
|
263 |
+
"excel_sheet_name": None,
|
264 |
+
"excel_result": "Error: No Excel file found and no Markdown table detected in prompt."
|
265 |
+
}
|
266 |
+
|
267 |
+
clean_rows = [row for row in table_lines if not re.match(r"^\s*\|\s*-+", row)]
|
268 |
+
table_block = "\n".join(clean_rows).strip()
|
269 |
+
print(f"Parsed excel as excel_result: {table_block}")
|
270 |
+
return {
|
271 |
+
"excel_path": None,
|
272 |
+
"excel_sheet_name": None,
|
273 |
+
"excel_result": table_block
|
274 |
+
}
|
275 |
+
|
276 |
+
|
277 |
+
|
278 |
+
|
279 |
+
import os
|
280 |
+
|
281 |
+
|
282 |
+
|
283 |
+
|
284 |
+
|
285 |
+
import os
|
286 |
+
import openai
|
287 |
+
from old2state import AgentState
|
288 |
+
|
289 |
+
def audio_transcriber_tool(state: AgentState) -> AgentState:
|
290 |
+
"""
|
291 |
+
LangGraph tool for transcribing audio via OpenAI's Whisper API.
|
292 |
+
Expects: state["audio_path"] to be either:
|
293 |
+
• A local file path (e.g. "./hf_files/abc.mp3"), OR
|
294 |
+
• A Task ID (e.g. "abc123"), in which case we try downloading
|
295 |
+
GET {DEFAULT_API_URL}/files/{task_id} with .mp3, .wav, .m4a extensions.
|
296 |
+
Returns:
|
297 |
+
{
|
298 |
+
"audio_path": None,
|
299 |
+
"transcript": "<text or error message>"
|
300 |
+
}
|
301 |
+
Always attempts to download the file for the given path or task ID.
|
302 |
+
"""
|
303 |
+
print("reached audio_transcriber_tool")
|
304 |
+
path_or_id = state.get("audio_path", "")
|
305 |
+
if not path_or_id:
|
306 |
+
return {}
|
307 |
+
|
308 |
+
# Always attempt to download the file, regardless of local existence
|
309 |
+
local_audio = ""
|
310 |
+
for ext in ("mp3", "wav", "m4a"):
|
311 |
+
candidate = _download_file_for_task(state.get("task_id"), ext)
|
312 |
+
if candidate:
|
313 |
+
local_audio = candidate
|
314 |
+
break
|
315 |
+
|
316 |
+
if not local_audio or not os.path.exists(local_audio):
|
317 |
+
return {
|
318 |
+
"audio_path": None,
|
319 |
+
"transcript": "Error: No audio file found (download failed)."
|
320 |
+
}
|
321 |
+
|
322 |
+
# Send to OpenAI Whisper
|
323 |
+
try:
|
324 |
+
openai.api_key = os.getenv("OPENAI_API_KEY")
|
325 |
+
if not openai.api_key:
|
326 |
+
raise RuntimeError("OPENAI_API_KEY is not set in environment.")
|
327 |
+
|
328 |
+
with open(local_audio, "rb") as audio_file:
|
329 |
+
print("reached openai.audio.transcriptions.create")
|
330 |
+
response = openai.audio.transcriptions.create(
|
331 |
+
model="whisper-1",
|
332 |
+
file=audio_file,
|
333 |
+
)
|
334 |
+
print("reached response")
|
335 |
+
text = response.text.strip()
|
336 |
+
except Exception as e:
|
337 |
+
text = f"Error during transcription: {e}"
|
338 |
+
print(f"Transcripted as transcript: {text}")
|
339 |
+
return {
|
340 |
+
"audio_path": None,
|
341 |
+
"transcript": text
|
342 |
+
}
|
343 |
+
# tools.py
|
344 |
+
|
345 |
+
import re
|
346 |
+
import requests
|
347 |
+
from old2state import AgentState
|
348 |
+
|
349 |
+
def wikipedia_search_tool(state: AgentState) -> AgentState:
|
350 |
+
"""
|
351 |
+
LangGraph wrapper for searching Wikipedia.
|
352 |
+
Expects: state["wiki_query"] to be a non‐empty string.
|
353 |
+
Returns:
|
354 |
+
{
|
355 |
+
"wiki_query": None,
|
356 |
+
"wiki_result": "<text summary of first matching page or an error message>"
|
357 |
+
}
|
358 |
+
If no valid wiki_query is provided, returns {}.
|
359 |
+
"""
|
360 |
+
print("reached wikipedia search tool")
|
361 |
+
query = state.get("wiki_query", "").strip()
|
362 |
+
if not query:
|
363 |
+
return {}
|
364 |
+
|
365 |
+
try:
|
366 |
+
# 1) Use the MediaWiki API to search for page titles matching the query
|
367 |
+
search_params = {
|
368 |
+
"action": "query",
|
369 |
+
"list": "search",
|
370 |
+
"srsearch": query,
|
371 |
+
"format": "json",
|
372 |
+
"utf8": 1
|
373 |
+
}
|
374 |
+
search_resp = requests.get("https://en.wikipedia.org/w/api.php", params=search_params, timeout=10)
|
375 |
+
search_resp.raise_for_status()
|
376 |
+
search_data = search_resp.json()
|
377 |
+
|
378 |
+
search_results = search_data.get("query", {}).get("search", [])
|
379 |
+
# print("wikipedia: search_results",search_results)
|
380 |
+
if not search_results:
|
381 |
+
return {"wiki_query": None, "wiki_result": f"No Wikipedia page found for '{query}'."}
|
382 |
+
|
383 |
+
# 2) Take the first search result's title
|
384 |
+
first_title = search_results[0].get("title", "")
|
385 |
+
if not first_title:
|
386 |
+
return {"wiki_query": None, "wiki_result": "Unexpected format from Wikipedia search."}
|
387 |
+
|
388 |
+
# 3) Fetch the page summary for that title via the REST summary endpoint
|
389 |
+
title_for_url = requests.utils.requote_uri(first_title)
|
390 |
+
summary_url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{title_for_url}"
|
391 |
+
summary_resp = requests.get(summary_url, timeout=10)
|
392 |
+
summary_resp.raise_for_status()
|
393 |
+
summary_data = summary_resp.json()
|
394 |
+
|
395 |
+
# 4) Extract either the "extract" field or a fallback message
|
396 |
+
summary_text = summary_data.get("extract")
|
397 |
+
if not summary_text:
|
398 |
+
summary_text = summary_data.get("description", "No summary available.")
|
399 |
+
|
400 |
+
return {
|
401 |
+
"wiki_query": None,
|
402 |
+
"wiki_result": f"Title: {first_title}\n\n{summary_text}"
|
403 |
+
}
|
404 |
+
|
405 |
+
except requests.exceptions.RequestException as e:
|
406 |
+
return {"wiki_query": None, "wiki_result": f"Wikipedia search error: {e}"}
|
407 |
+
except Exception as e:
|
408 |
+
return {"wiki_query": None, "wiki_result": f"Unexpected error in wikipedia_search_tool: {e}"}
|
409 |
+
|
410 |
+
|
411 |
+
|
412 |
+
|
413 |
+
|
414 |
+
def run_tools(state: AgentState, tool_out: AgentState) -> AgentState:
|
415 |
+
"""
|
416 |
+
Merges whatever partial state the tool wrapper returned (tool_out)
|
417 |
+
into the main state. That is, combine previous keys with new keys:
|
418 |
+
new_state = { **state, **tool_out }.
|
419 |
+
This node should be wired as its own graph node, not as a transition function.
|
420 |
+
"""
|
421 |
+
new_state = {**state, **tool_out}
|
422 |
+
return new_state
|
old_app_copy.py
CHANGED
@@ -15,12 +15,12 @@ from langgraph.graph.message import add_messages
|
|
15 |
from langchain.schema import HumanMessage, SystemMessage, AIMessage
|
16 |
# Create a ToolNode that knows about your web_search function
|
17 |
import json
|
18 |
-
from
|
19 |
|
20 |
# --- Constants ---
|
21 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
22 |
|
23 |
-
from
|
24 |
|
25 |
llm = ChatOpenAI(model_name="gpt-4o-mini")
|
26 |
|
|
|
15 |
from langchain.schema import HumanMessage, SystemMessage, AIMessage
|
16 |
# Create a ToolNode that knows about your web_search function
|
17 |
import json
|
18 |
+
from old2state import AgentState
|
19 |
|
20 |
# --- Constants ---
|
21 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
22 |
|
23 |
+
from old2tools import ocr_image_tool, parse_excel_tool, web_search_tool, run_tools, audio_transcriber_tool, wikipedia_search_tool
|
24 |
|
25 |
llm = ChatOpenAI(model_name="gpt-4o-mini")
|
26 |
|
state.py
CHANGED
@@ -1,22 +1,23 @@
|
|
1 |
-
from
|
2 |
-
from typing import
|
3 |
-
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
tool_counter: int
|
|
|
1 |
+
from dataclasses import dataclass, field
|
2 |
+
from typing import List, Dict, Any, Optional
|
3 |
+
import json
|
4 |
+
from dataclasses import dataclass, field, asdict
|
5 |
+
from langchain.schema import SystemMessage, HumanMessage, AIMessage, BaseMessage
|
6 |
|
7 |
+
|
8 |
+
@dataclass
|
9 |
+
class AgentState:
|
10 |
+
"""Single source‑of‑truth context for one user query run."""
|
11 |
+
|
12 |
+
user_question: str
|
13 |
+
task_id: Optional[str] = None
|
14 |
+
messages: List[BaseMessage] = field(default_factory=list)
|
15 |
+
|
16 |
+
next_action: Optional[str] = None # wiki | ocr | audio | final
|
17 |
+
query: Optional[str] = None # wiki search term
|
18 |
+
tool_calls: int = 0
|
19 |
+
|
20 |
+
final_answer: Optional[str] = None
|
21 |
+
|
22 |
+
def add(self, *msgs: BaseMessage):
|
23 |
+
self.messages.extend(msgs)
|
|
tools.py
CHANGED
@@ -1,14 +1,12 @@
|
|
1 |
# tools.py
|
2 |
|
3 |
import pandas as pd
|
4 |
-
|
5 |
from pathlib import Path
|
6 |
-
|
7 |
-
# import pytesseract
|
8 |
-
from state import AgentState
|
9 |
-
from langchain.schema import HumanMessage
|
10 |
import regex as re
|
11 |
import time
|
|
|
12 |
from duckduckgo_search import DDGS
|
13 |
|
14 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
@@ -39,83 +37,20 @@ def _download_file_for_task(task_id: str, ext: str) -> str:
|
|
39 |
# If we get here, either 404 or download error
|
40 |
return ""
|
41 |
|
42 |
-
|
43 |
-
def web_search_tool(state: AgentState) -> AgentState:
|
44 |
-
"""
|
45 |
-
Expects: state["web_search_query"] is a non‐empty string.
|
46 |
-
Returns: {"web_search_query": None, "web_search_result": <string>}.
|
47 |
-
Retries up to 5 times on either a DuckDuckGo “202 Ratelimit” response or any exception (e.g. timeout).
|
48 |
-
"""
|
49 |
-
print("reached web_search_tool")
|
50 |
-
query = state.get("web_search_query", "")
|
51 |
-
if not query:
|
52 |
-
return {} # nothing to do
|
53 |
-
|
54 |
-
ddg = DDGS()
|
55 |
-
max_retries = 5
|
56 |
-
result_text = ""
|
57 |
-
|
58 |
-
for attempt in range(1, max_retries + 1):
|
59 |
-
try:
|
60 |
-
result_text = str(ddg.text(query, max_results=5))
|
61 |
-
except Exception as e:
|
62 |
-
# Network error or timeout—retry up to max_retries
|
63 |
-
if attempt < max_retries:
|
64 |
-
print(f"web_search_tool: exception '{e}', retrying in 4 seconds ({attempt}/{max_retries})")
|
65 |
-
time.sleep(4)
|
66 |
-
continue
|
67 |
-
else:
|
68 |
-
# Final attempt failed
|
69 |
-
return {
|
70 |
-
"web_search_query": None,
|
71 |
-
"web_search_result": f"Error during DuckDuckGo search: {e}"
|
72 |
-
}
|
73 |
-
|
74 |
-
# Check for DuckDuckGo rate‐limit indicator
|
75 |
-
if "202 Ratelimit" in result_text:
|
76 |
-
if attempt < max_retries:
|
77 |
-
print(f"web_search_tool: received '202 Ratelimit', retrying in 4 seconds ({attempt}/{max_retries})")
|
78 |
-
time.sleep(4)
|
79 |
-
continue
|
80 |
-
else:
|
81 |
-
# Final attempt still rate‐limited
|
82 |
-
break
|
83 |
-
|
84 |
-
# Successful response (no exception and no rate‐limit text)
|
85 |
-
break
|
86 |
-
|
87 |
-
return {
|
88 |
-
"web_search_query": None,
|
89 |
-
"web_search_result": result_text
|
90 |
-
}
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
def ocr_image_tool(state: AgentState) -> AgentState:
|
95 |
"""
|
96 |
Expects: state["ocr_path"] is either:
|
97 |
• a local image path (e.g. "./hf_files/abc.png"), OR
|
98 |
• a Task ID (e.g. "abc123"), in which case we try downloading
|
99 |
GET {DEFAULT_API_URL}/files/{task_id} with .png/.jpg/.jpeg extensions.
|
100 |
|
101 |
-
Returns:
|
102 |
-
|
103 |
-
"ocr_path": None,
|
104 |
-
"ocr_result": "<OCR text + brief caption or an error message>"
|
105 |
-
}
|
106 |
"""
|
107 |
print("reached ocr_image_tool")
|
108 |
-
path_or_id = state.get("ocr_path", "")
|
109 |
-
# if not path_or_id:
|
110 |
-
# return {}
|
111 |
-
|
112 |
-
# 1) Determine local_img: either existing path_or_id or download by Task ID
|
113 |
-
# local_img = ""
|
114 |
-
# if os.path.exists(path_or_id):
|
115 |
-
# local_img = path_or_id
|
116 |
-
# else:
|
117 |
for ext in ("png", "jpg", "jpeg"):
|
118 |
-
candidate = _download_file_for_task(
|
119 |
if candidate:
|
120 |
local_img = candidate
|
121 |
break
|
@@ -188,105 +123,39 @@ def ocr_image_tool(state: AgentState) -> AgentState:
|
|
188 |
# 6) Combine OCR + caption
|
189 |
combined = f"OCR text:\n{ocr_text}\n\nImage caption:\n{caption}"
|
190 |
print("combined: ")
|
191 |
-
return
|
192 |
-
|
193 |
-
"ocr_result": combined
|
194 |
-
}
|
195 |
|
196 |
-
def parse_excel_tool(
|
197 |
"""
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
"excel_sheet_name": None,
|
205 |
-
"excel_result": "<stringified records or Markdown table>"
|
206 |
-
}
|
207 |
-
Always attempts to download the file for the given path or task ID.
|
208 |
"""
|
209 |
-
|
210 |
-
|
211 |
-
path_or_id = state.get("excel_path", "")
|
212 |
-
sheet = state.get("excel_sheet_name", "")
|
213 |
-
if not path_or_id:
|
214 |
-
return {}
|
215 |
-
|
216 |
-
# Always attempt to download the file, regardless of local existence
|
217 |
-
|
218 |
-
|
219 |
-
# If we finally have a real file, read it
|
220 |
-
if local_xlsx and os.path.exists(local_xlsx):
|
221 |
-
try:
|
222 |
-
print("reached excel file found")
|
223 |
-
xls = pd.ExcelFile(local_xlsx)
|
224 |
-
if sheet and sheet in xls.sheet_names:
|
225 |
-
df = pd.read_excel(xls, sheet_name=sheet)
|
226 |
-
else:
|
227 |
-
df = pd.read_excel(xls, sheet_name=xls.sheet_names[0])
|
228 |
-
records = df.to_dict(orient="records")
|
229 |
-
text = str(records)
|
230 |
-
print("reached excel file found: ")
|
231 |
-
print(text)
|
232 |
-
print()
|
233 |
-
return {
|
234 |
-
"excel_path": None,
|
235 |
-
"excel_sheet_name": None,
|
236 |
-
"excel_result": text
|
237 |
-
}
|
238 |
-
except Exception as e:
|
239 |
-
print(f">>> parse_excel_tool: Error reading Excel file {local_xlsx}: {e}")
|
240 |
-
# Fall back to scanning for Markdown below
|
241 |
-
|
242 |
-
# Fallback: scan any HumanMessage for a Markdown‐style table
|
243 |
-
messages = state.get("messages", [])
|
244 |
-
table_lines = []
|
245 |
-
collecting = False
|
246 |
-
|
247 |
-
for msg in messages:
|
248 |
-
if isinstance(msg, HumanMessage):
|
249 |
-
for line in msg.content.splitlines():
|
250 |
-
if re.match(r"^\s*\|\s*[-A-Za-z0-9]", line):
|
251 |
-
collecting = True
|
252 |
-
if collecting:
|
253 |
-
if not re.match(r"^\s*\|", line):
|
254 |
-
collecting = False
|
255 |
-
break
|
256 |
-
table_lines.append(line)
|
257 |
-
if table_lines:
|
258 |
-
break
|
259 |
-
|
260 |
-
if not table_lines:
|
261 |
-
return {
|
262 |
-
"excel_path": None,
|
263 |
-
"excel_sheet_name": None,
|
264 |
-
"excel_result": "Error: No Excel file found and no Markdown table detected in prompt."
|
265 |
-
}
|
266 |
-
|
267 |
-
clean_rows = [row for row in table_lines if not re.match(r"^\s*\|\s*-+", row)]
|
268 |
-
table_block = "\n".join(clean_rows).strip()
|
269 |
-
print(f"Parsed excel as excel_result: {table_block}")
|
270 |
-
return {
|
271 |
-
"excel_path": None,
|
272 |
-
"excel_sheet_name": None,
|
273 |
-
"excel_result": table_block
|
274 |
-
}
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
import os
|
280 |
-
|
281 |
-
|
282 |
|
|
|
|
|
|
|
283 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
|
285 |
-
import os
|
286 |
import openai
|
287 |
-
from state import AgentState
|
288 |
|
289 |
-
def audio_transcriber_tool(
|
290 |
"""
|
291 |
LangGraph tool for transcribing audio via OpenAI's Whisper API.
|
292 |
Expects: state["audio_path"] to be either:
|
@@ -301,23 +170,21 @@ def audio_transcriber_tool(state: AgentState) -> AgentState:
|
|
301 |
Always attempts to download the file for the given path or task ID.
|
302 |
"""
|
303 |
print("reached audio_transcriber_tool")
|
304 |
-
path_or_id = state.get("audio_path", "")
|
305 |
-
if not path_or_id:
|
306 |
-
|
307 |
|
308 |
# Always attempt to download the file, regardless of local existence
|
309 |
local_audio = ""
|
310 |
for ext in ("mp3", "wav", "m4a"):
|
311 |
-
candidate = _download_file_for_task(
|
312 |
if candidate:
|
313 |
local_audio = candidate
|
314 |
break
|
315 |
|
316 |
if not local_audio or not os.path.exists(local_audio):
|
317 |
-
return
|
318 |
-
|
319 |
-
"transcript": "Error: No audio file found (download failed)."
|
320 |
-
}
|
321 |
|
322 |
# Send to OpenAI Whisper
|
323 |
try:
|
@@ -336,17 +203,13 @@ def audio_transcriber_tool(state: AgentState) -> AgentState:
|
|
336 |
except Exception as e:
|
337 |
text = f"Error during transcription: {e}"
|
338 |
print(f"Transcripted as transcript: {text}")
|
339 |
-
return
|
340 |
-
"audio_path": None,
|
341 |
-
"transcript": text
|
342 |
-
}
|
343 |
# tools.py
|
344 |
|
345 |
import re
|
346 |
import requests
|
347 |
-
from state import AgentState
|
348 |
|
349 |
-
def wikipedia_search_tool(
|
350 |
"""
|
351 |
LangGraph wrapper for searching Wikipedia.
|
352 |
Expects: state["wiki_query"] to be a non‐empty string.
|
@@ -358,7 +221,7 @@ def wikipedia_search_tool(state: AgentState) -> AgentState:
|
|
358 |
If no valid wiki_query is provided, returns {}.
|
359 |
"""
|
360 |
print("reached wikipedia search tool")
|
361 |
-
query =
|
362 |
if not query:
|
363 |
return {}
|
364 |
|
@@ -397,26 +260,63 @@ def wikipedia_search_tool(state: AgentState) -> AgentState:
|
|
397 |
if not summary_text:
|
398 |
summary_text = summary_data.get("description", "No summary available.")
|
399 |
|
400 |
-
return {
|
401 |
-
|
402 |
-
"wiki_result": f"Title: {first_title}\n\n{summary_text}"
|
403 |
-
}
|
404 |
|
405 |
except requests.exceptions.RequestException as e:
|
406 |
-
return
|
407 |
except Exception as e:
|
408 |
-
return
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
def
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# tools.py
|
2 |
|
3 |
import pandas as pd
|
4 |
+
|
5 |
from pathlib import Path
|
6 |
+
|
|
|
|
|
|
|
7 |
import regex as re
|
8 |
import time
|
9 |
+
import os
|
10 |
from duckduckgo_search import DDGS
|
11 |
|
12 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
37 |
# If we get here, either 404 or download error
|
38 |
return ""
|
39 |
|
40 |
+
def ocr_image_tool(args: dict) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
"""
|
42 |
Expects: state["ocr_path"] is either:
|
43 |
• a local image path (e.g. "./hf_files/abc.png"), OR
|
44 |
• a Task ID (e.g. "abc123"), in which case we try downloading
|
45 |
GET {DEFAULT_API_URL}/files/{task_id} with .png/.jpg/.jpeg extensions.
|
46 |
|
47 |
+
Returns: "OCR text + brief caption or an error message"
|
48 |
+
|
|
|
|
|
|
|
49 |
"""
|
50 |
print("reached ocr_image_tool")
|
51 |
+
# path_or_id = state.get("ocr_path", "")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
for ext in ("png", "jpg", "jpeg"):
|
53 |
+
candidate = _download_file_for_task(args["task_id"], ext)
|
54 |
if candidate:
|
55 |
local_img = candidate
|
56 |
break
|
|
|
123 |
# 6) Combine OCR + caption
|
124 |
combined = f"OCR text:\n{ocr_text}\n\nImage caption:\n{caption}"
|
125 |
print("combined: ")
|
126 |
+
return combined
|
127 |
+
|
|
|
|
|
128 |
|
129 |
+
def parse_excel_tool(args: dict) -> str:
|
130 |
"""
|
131 |
+
Downloads <task_id>.xlsx (if any) and returns a stringified list of
|
132 |
+
records from the specified sheet. No fallback to user-supplied tables.
|
133 |
+
Expected keys in `args`:
|
134 |
+
• task_id – required (used to download the file)
|
135 |
+
• excel_sheet_name – optional sheet to load
|
136 |
+
returns: stringified list of records from the specified sheet
|
|
|
|
|
|
|
|
|
137 |
"""
|
138 |
+
task_id = args.get("task_id", "")
|
139 |
+
sheet = args.get("excel_sheet_name", "")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
+
local_xlsx = _download_file_for_task(task_id, "xlsx")
|
142 |
+
if not local_xlsx or not os.path.exists(local_xlsx):
|
143 |
+
return "Error: Excel file not found for this task."
|
144 |
|
145 |
+
try:
|
146 |
+
xls = pd.ExcelFile(local_xlsx)
|
147 |
+
df = pd.read_excel(
|
148 |
+
xls,
|
149 |
+
sheet_name=sheet if sheet and sheet in xls.sheet_names else xls.sheet_names[0]
|
150 |
+
)
|
151 |
+
return str(df.to_dict(orient="records"))
|
152 |
+
except Exception as e:
|
153 |
+
return f"Error reading Excel file: {e}"
|
154 |
+
|
155 |
|
|
|
156 |
import openai
|
|
|
157 |
|
158 |
+
def audio_transcriber_tool(args: dict) -> str:
|
159 |
"""
|
160 |
LangGraph tool for transcribing audio via OpenAI's Whisper API.
|
161 |
Expects: state["audio_path"] to be either:
|
|
|
170 |
Always attempts to download the file for the given path or task ID.
|
171 |
"""
|
172 |
print("reached audio_transcriber_tool")
|
173 |
+
# path_or_id = state.get("audio_path", "")
|
174 |
+
# if not path_or_id:
|
175 |
+
# return {}
|
176 |
|
177 |
# Always attempt to download the file, regardless of local existence
|
178 |
local_audio = ""
|
179 |
for ext in ("mp3", "wav", "m4a"):
|
180 |
+
candidate = _download_file_for_task(args["task_id"], ext)
|
181 |
if candidate:
|
182 |
local_audio = candidate
|
183 |
break
|
184 |
|
185 |
if not local_audio or not os.path.exists(local_audio):
|
186 |
+
return "Error: No audio file found (download failed)."
|
187 |
+
|
|
|
|
|
188 |
|
189 |
# Send to OpenAI Whisper
|
190 |
try:
|
|
|
203 |
except Exception as e:
|
204 |
text = f"Error during transcription: {e}"
|
205 |
print(f"Transcripted as transcript: {text}")
|
206 |
+
return text
|
|
|
|
|
|
|
207 |
# tools.py
|
208 |
|
209 |
import re
|
210 |
import requests
|
|
|
211 |
|
212 |
+
def wikipedia_search_tool(args: dict) -> str:
|
213 |
"""
|
214 |
LangGraph wrapper for searching Wikipedia.
|
215 |
Expects: state["wiki_query"] to be a non‐empty string.
|
|
|
221 |
If no valid wiki_query is provided, returns {}.
|
222 |
"""
|
223 |
print("reached wikipedia search tool")
|
224 |
+
query = args["wiki_query"]
|
225 |
if not query:
|
226 |
return {}
|
227 |
|
|
|
260 |
if not summary_text:
|
261 |
summary_text = summary_data.get("description", "No summary available.")
|
262 |
|
263 |
+
return f"Title: {first_title}\n\n{summary_text}"
|
264 |
+
|
|
|
|
|
265 |
|
266 |
except requests.exceptions.RequestException as e:
|
267 |
+
return f"Wikipedia search error: {e}"
|
268 |
except Exception as e:
|
269 |
+
return f"Unexpected error in wikipedia_search_tool: {e}"
|
270 |
+
|
271 |
+
|
272 |
+
|
273 |
+
|
274 |
+
|
275 |
+
# def web_search_tool(state: AgentState) -> AgentState:
|
276 |
+
# """
|
277 |
+
# Expects: state["web_search_query"] is a non‐empty string.
|
278 |
+
# Returns: {"web_search_query": None, "web_search_result": <string>}.
|
279 |
+
# Retries up to 5 times on either a DuckDuckGo “202 Ratelimit” response or any exception (e.g. timeout).
|
280 |
+
# """
|
281 |
+
# print("reached web_search_tool")
|
282 |
+
# query = state.get("web_search_query", "")
|
283 |
+
# if not query:
|
284 |
+
# return {} # nothing to do
|
285 |
+
|
286 |
+
# ddg = DDGS()
|
287 |
+
# max_retries = 5
|
288 |
+
# result_text = ""
|
289 |
+
|
290 |
+
# for attempt in range(1, max_retries + 1):
|
291 |
+
# try:
|
292 |
+
# result_text = str(ddg.text(query, max_results=5))
|
293 |
+
# except Exception as e:
|
294 |
+
# # Network error or timeout—retry up to max_retries
|
295 |
+
# if attempt < max_retries:
|
296 |
+
# print(f"web_search_tool: exception '{e}', retrying in 4 seconds ({attempt}/{max_retries})")
|
297 |
+
# time.sleep(4)
|
298 |
+
# continue
|
299 |
+
# else:
|
300 |
+
# # Final attempt failed
|
301 |
+
# return {
|
302 |
+
# "web_search_query": None,
|
303 |
+
# "web_search_result": f"Error during DuckDuckGo search: {e}"
|
304 |
+
# }
|
305 |
+
|
306 |
+
# # Check for DuckDuckGo rate‐limit indicator
|
307 |
+
# if "202 Ratelimit" in result_text:
|
308 |
+
# if attempt < max_retries:
|
309 |
+
# print(f"web_search_tool: received '202 Ratelimit', retrying in 4 seconds ({attempt}/{max_retries})")
|
310 |
+
# time.sleep(4)
|
311 |
+
# continue
|
312 |
+
# else:
|
313 |
+
# # Final attempt still rate‐limited
|
314 |
+
# break
|
315 |
+
|
316 |
+
# # Successful response (no exception and no rate‐limit text)
|
317 |
+
# break
|
318 |
+
|
319 |
+
# return {
|
320 |
+
# "web_search_query": None,
|
321 |
+
# "web_search_result": result_text
|
322 |
+
# }
|