Spaces:
Sleeping
Sleeping
Update tools.py
Browse files
tools.py
CHANGED
@@ -41,7 +41,7 @@ def web_search_tool(state: AgentState) -> AgentState:
|
|
41 |
"""
|
42 |
Expects: state["web_search_query"] is a non‐empty string.
|
43 |
Returns: {"web_search_query": None, "web_search_result": <string>}
|
44 |
-
We also clear web_search_query so we don
|
45 |
If the result is a DuckDuckGo 202 Ratelimit error, retry up to 5 times with a 5 second sleep between attempts.
|
46 |
"""
|
47 |
# print("reached web search tool")
|
@@ -54,11 +54,12 @@ def web_search_tool(state: AgentState) -> AgentState:
|
|
54 |
for attempt in range(max_retries):
|
55 |
result_text = ddg.run(query)
|
56 |
if "202 Ratelimit" not in result_text:
|
|
|
57 |
break
|
58 |
if attempt < max_retries - 1:
|
59 |
print(f"web_search_result: rate limit error, retrying in 10 seconds")
|
60 |
time.sleep(4)
|
61 |
-
print(f"web_search_result reached ")
|
62 |
return {
|
63 |
"web_search_query": None,
|
64 |
"web_search_result": result_text
|
@@ -73,31 +74,27 @@ def ocr_image_tool(state: AgentState) -> AgentState:
|
|
73 |
• A Task ID string like "abc123", in which case we GET /files/abc123.
|
74 |
Returns:
|
75 |
{ "ocr_path": None, "ocr_result": "<OCRed text or error string>" }
|
|
|
76 |
"""
|
77 |
path_or_id = state.get("ocr_path", "")
|
78 |
if not path_or_id:
|
79 |
return {}
|
80 |
|
81 |
-
#
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
for ext in ("png", "jpg", "jpeg"):
|
89 |
-
candidate = _download_file_for_task(path_or_id, ext)
|
90 |
-
if candidate:
|
91 |
-
local_img = candidate
|
92 |
-
break
|
93 |
|
94 |
if not local_img or not os.path.exists(local_img):
|
95 |
return {
|
96 |
"ocr_path": None,
|
97 |
-
"ocr_result": "Error: No image file found (
|
98 |
}
|
99 |
|
100 |
-
#
|
101 |
try:
|
102 |
img = Image.open(local_img)
|
103 |
text = pytesseract.image_to_string(img).strip() or "(no visible text)"
|
@@ -121,19 +118,17 @@ def parse_excel_tool(state: AgentState) -> AgentState:
|
|
121 |
"excel_sheet_name": None,
|
122 |
"excel_result": "<stringified records or Markdown table>"
|
123 |
}
|
|
|
124 |
"""
|
125 |
path_or_id = state.get("excel_path", "")
|
126 |
sheet = state.get("excel_sheet_name", "")
|
127 |
if not path_or_id:
|
128 |
return {}
|
129 |
|
130 |
-
#
|
131 |
-
|
132 |
-
local_xlsx = path_or_id
|
133 |
-
else:
|
134 |
-
local_xlsx = _download_file_for_task(path_or_id, "xlsx")
|
135 |
|
136 |
-
#
|
137 |
if local_xlsx and os.path.exists(local_xlsx):
|
138 |
try:
|
139 |
xls = pd.ExcelFile(local_xlsx)
|
@@ -152,7 +147,7 @@ def parse_excel_tool(state: AgentState) -> AgentState:
|
|
152 |
print(f">>> parse_excel_tool: Error reading Excel file {local_xlsx}: {e}")
|
153 |
# Fall back to scanning for Markdown below
|
154 |
|
155 |
-
#
|
156 |
messages = state.get("messages", [])
|
157 |
table_lines = []
|
158 |
collecting = False
|
@@ -177,7 +172,6 @@ def parse_excel_tool(state: AgentState) -> AgentState:
|
|
177 |
"excel_result": "Error: No Excel file found and no Markdown table detected in prompt."
|
178 |
}
|
179 |
|
180 |
-
# 4) Strip out separator rows and return the table block
|
181 |
clean_rows = [row for row in table_lines if not re.match(r"^\s*\|\s*-+", row)]
|
182 |
table_block = "\n".join(clean_rows).strip()
|
183 |
print(f"Parsed excel as excel_result: {table_block}")
|
@@ -210,52 +204,44 @@ from state import AgentState
|
|
210 |
|
211 |
def audio_transcriber_tool(state: AgentState) -> AgentState:
|
212 |
"""
|
213 |
-
LangGraph tool for transcribing audio via OpenAI
|
214 |
Expects: state["audio_path"] to be either:
|
215 |
• A local file path (e.g. "./hf_files/abc.mp3"), OR
|
216 |
• A Task ID (e.g. "abc123"), in which case we try downloading
|
217 |
GET {DEFAULT_API_URL}/files/{task_id} with .mp3, .wav, .m4a extensions.
|
218 |
-
|
219 |
Returns:
|
220 |
{
|
221 |
"audio_path": None,
|
222 |
"transcript": "<text or error message>"
|
223 |
}
|
|
|
224 |
"""
|
225 |
path_or_id = state.get("audio_path", "")
|
226 |
if not path_or_id:
|
227 |
return {}
|
228 |
|
229 |
-
#
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
if candidate:
|
237 |
-
local_audio = candidate
|
238 |
-
break
|
239 |
|
240 |
if not local_audio or not os.path.exists(local_audio):
|
241 |
-
# Neither a real file nor a downloadable attachment
|
242 |
return {
|
243 |
"audio_path": None,
|
244 |
-
"transcript": "Error: No audio file found (
|
245 |
}
|
246 |
|
247 |
-
#
|
248 |
try:
|
249 |
openai.api_key = os.getenv("OPENAI_API_KEY")
|
250 |
if not openai.api_key:
|
251 |
raise RuntimeError("OPENAI_API_KEY is not set in environment.")
|
252 |
|
253 |
with open(local_audio, "rb") as audio_file:
|
254 |
-
# For OpenAI Python library v0.27.0+:
|
255 |
response = openai.Audio.transcribe("whisper-1", audio_file)
|
256 |
-
# If you’re on an older library:
|
257 |
-
# response = openai.Audio.create_transcription(file=audio_file, model="whisper-1")
|
258 |
-
|
259 |
text = response.get("text", "").strip()
|
260 |
except Exception as e:
|
261 |
text = f"Error during transcription: {e}"
|
|
|
41 |
"""
|
42 |
Expects: state["web_search_query"] is a non‐empty string.
|
43 |
Returns: {"web_search_query": None, "web_search_result": <string>}
|
44 |
+
We also clear web_search_query so we don't loop forever.
|
45 |
If the result is a DuckDuckGo 202 Ratelimit error, retry up to 5 times with a 5 second sleep between attempts.
|
46 |
"""
|
47 |
# print("reached web search tool")
|
|
|
54 |
for attempt in range(max_retries):
|
55 |
result_text = ddg.run(query)
|
56 |
if "202 Ratelimit" not in result_text:
|
57 |
+
print(f"web_search_result success:")
|
58 |
break
|
59 |
if attempt < max_retries - 1:
|
60 |
print(f"web_search_result: rate limit error, retrying in 10 seconds")
|
61 |
time.sleep(4)
|
62 |
+
# print(f"web_search_result reached ")
|
63 |
return {
|
64 |
"web_search_query": None,
|
65 |
"web_search_result": result_text
|
|
|
74 |
• A Task ID string like "abc123", in which case we GET /files/abc123.
|
75 |
Returns:
|
76 |
{ "ocr_path": None, "ocr_result": "<OCRed text or error string>" }
|
77 |
+
Always attempts to download the file for the given path or task ID.
|
78 |
"""
|
79 |
path_or_id = state.get("ocr_path", "")
|
80 |
if not path_or_id:
|
81 |
return {}
|
82 |
|
83 |
+
# Always attempt to download the file, regardless of local existence
|
84 |
+
local_img = ""
|
85 |
+
for ext in ("png", "jpg", "jpeg"):
|
86 |
+
candidate = _download_file_for_task(path_or_id, ext)
|
87 |
+
if candidate:
|
88 |
+
local_img = candidate
|
89 |
+
break
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
if not local_img or not os.path.exists(local_img):
|
92 |
return {
|
93 |
"ocr_path": None,
|
94 |
+
"ocr_result": "Error: No image file found (download failed)."
|
95 |
}
|
96 |
|
97 |
+
# Run OCR
|
98 |
try:
|
99 |
img = Image.open(local_img)
|
100 |
text = pytesseract.image_to_string(img).strip() or "(no visible text)"
|
|
|
118 |
"excel_sheet_name": None,
|
119 |
"excel_result": "<stringified records or Markdown table>"
|
120 |
}
|
121 |
+
Always attempts to download the file for the given path or task ID.
|
122 |
"""
|
123 |
path_or_id = state.get("excel_path", "")
|
124 |
sheet = state.get("excel_sheet_name", "")
|
125 |
if not path_or_id:
|
126 |
return {}
|
127 |
|
128 |
+
# Always attempt to download the file, regardless of local existence
|
129 |
+
local_xlsx = _download_file_for_task(path_or_id, "xlsx")
|
|
|
|
|
|
|
130 |
|
131 |
+
# If we finally have a real file, read it
|
132 |
if local_xlsx and os.path.exists(local_xlsx):
|
133 |
try:
|
134 |
xls = pd.ExcelFile(local_xlsx)
|
|
|
147 |
print(f">>> parse_excel_tool: Error reading Excel file {local_xlsx}: {e}")
|
148 |
# Fall back to scanning for Markdown below
|
149 |
|
150 |
+
# Fallback: scan any HumanMessage for a Markdown‐style table
|
151 |
messages = state.get("messages", [])
|
152 |
table_lines = []
|
153 |
collecting = False
|
|
|
172 |
"excel_result": "Error: No Excel file found and no Markdown table detected in prompt."
|
173 |
}
|
174 |
|
|
|
175 |
clean_rows = [row for row in table_lines if not re.match(r"^\s*\|\s*-+", row)]
|
176 |
table_block = "\n".join(clean_rows).strip()
|
177 |
print(f"Parsed excel as excel_result: {table_block}")
|
|
|
204 |
|
205 |
def audio_transcriber_tool(state: AgentState) -> AgentState:
|
206 |
"""
|
207 |
+
LangGraph tool for transcribing audio via OpenAI's Whisper API.
|
208 |
Expects: state["audio_path"] to be either:
|
209 |
• A local file path (e.g. "./hf_files/abc.mp3"), OR
|
210 |
• A Task ID (e.g. "abc123"), in which case we try downloading
|
211 |
GET {DEFAULT_API_URL}/files/{task_id} with .mp3, .wav, .m4a extensions.
|
|
|
212 |
Returns:
|
213 |
{
|
214 |
"audio_path": None,
|
215 |
"transcript": "<text or error message>"
|
216 |
}
|
217 |
+
Always attempts to download the file for the given path or task ID.
|
218 |
"""
|
219 |
path_or_id = state.get("audio_path", "")
|
220 |
if not path_or_id:
|
221 |
return {}
|
222 |
|
223 |
+
# Always attempt to download the file, regardless of local existence
|
224 |
+
local_audio = ""
|
225 |
+
for ext in ("mp3", "wav", "m4a"):
|
226 |
+
candidate = _download_file_for_task(path_or_id, ext)
|
227 |
+
if candidate:
|
228 |
+
local_audio = candidate
|
229 |
+
break
|
|
|
|
|
|
|
230 |
|
231 |
if not local_audio or not os.path.exists(local_audio):
|
|
|
232 |
return {
|
233 |
"audio_path": None,
|
234 |
+
"transcript": "Error: No audio file found (download failed)."
|
235 |
}
|
236 |
|
237 |
+
# Send to OpenAI Whisper
|
238 |
try:
|
239 |
openai.api_key = os.getenv("OPENAI_API_KEY")
|
240 |
if not openai.api_key:
|
241 |
raise RuntimeError("OPENAI_API_KEY is not set in environment.")
|
242 |
|
243 |
with open(local_audio, "rb") as audio_file:
|
|
|
244 |
response = openai.Audio.transcribe("whisper-1", audio_file)
|
|
|
|
|
|
|
245 |
text = response.get("text", "").strip()
|
246 |
except Exception as e:
|
247 |
text = f"Error during transcription: {e}"
|