Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -24,17 +24,18 @@ from tools import ocr_image_tool, parse_excel_tool, web_search_tool, run_tools,
|
|
24 |
|
25 |
llm = ChatOpenAI(model_name="gpt-4o-mini")
|
26 |
|
|
|
27 |
# βββ 1) plan_node βββ
|
28 |
def plan_node(state: AgentState) -> AgentState:
|
29 |
"""
|
30 |
Step 1: Ask GPT to draft a concise direct answer (INTERIM_ANSWER),
|
31 |
then decide if it's confident enough to stop or if it needs one tool.
|
32 |
-
If confident: return {"final_answer":
|
33 |
-
Otherwise: return exactly one of
|
34 |
-
{"wiki_query":
|
35 |
-
{"ocr_path":
|
36 |
-
{"excel_path":
|
37 |
-
{"audio_path":
|
38 |
"""
|
39 |
prior_msgs = state.get("messages", [])
|
40 |
user_input = ""
|
@@ -71,19 +72,18 @@ def plan_node(state: AgentState) -> AgentState:
|
|
71 |
try:
|
72 |
parsed = json.loads(llm_out)
|
73 |
if isinstance(parsed, dict):
|
74 |
-
# Build a
|
75 |
partial: AgentState = {
|
76 |
"messages": new_msgs,
|
77 |
-
"tool_counter": state.get("tool_counter", 0)
|
78 |
}
|
79 |
-
# Only copy allowed keys (LMM won't know about web_search_query, so it won't appear)
|
80 |
allowed_keys = {
|
81 |
"final_answer",
|
82 |
"wiki_query",
|
83 |
"ocr_path",
|
84 |
"excel_path",
|
85 |
"excel_sheet_name",
|
86 |
-
"audio_path"
|
87 |
}
|
88 |
for k, v in parsed.items():
|
89 |
if k in allowed_keys:
|
@@ -92,10 +92,10 @@ def plan_node(state: AgentState) -> AgentState:
|
|
92 |
except json.JSONDecodeError:
|
93 |
pass
|
94 |
|
95 |
-
# Fallback:
|
96 |
return {
|
97 |
"messages": new_msgs,
|
98 |
-
"final_answer": "Sorry, I could not parse your intent."
|
99 |
}
|
100 |
|
101 |
|
@@ -112,7 +112,7 @@ def tool_node(state: AgentState) -> AgentState:
|
|
112 |
- ocr_path β ocr_image_tool
|
113 |
- excel_path β parse_excel_tool
|
114 |
- audio_path β audio_transcriber_tool
|
115 |
-
- (web_search_query path
|
116 |
"""
|
117 |
tool_counter = state.get("tool_counter", 0)
|
118 |
if tool_counter > 5:
|
@@ -120,7 +120,6 @@ def tool_node(state: AgentState) -> AgentState:
|
|
120 |
tool_counter += 1
|
121 |
state["tool_counter"] = tool_counter
|
122 |
|
123 |
-
# Only one of these keys should be present at a time
|
124 |
if state.get("wiki_query"):
|
125 |
return wikipedia_search_tool(state)
|
126 |
if state.get("web_search_query"):
|
@@ -131,7 +130,8 @@ def tool_node(state: AgentState) -> AgentState:
|
|
131 |
return parse_excel_tool(state)
|
132 |
if state.get("audio_path"):
|
133 |
return audio_transcriber_tool(state)
|
134 |
-
|
|
|
135 |
|
136 |
|
137 |
# βββ 4) merge_tool_output βββ
|
@@ -142,10 +142,28 @@ def merge_tool_output(state: AgentState) -> AgentState:
|
|
142 |
prev = state.get("prev_state", {}).copy()
|
143 |
|
144 |
# Drop any lingering request keys so they don't persist
|
145 |
-
for dead in [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
prev.pop(dead, None)
|
147 |
|
148 |
merged = {**prev, **state}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
merged.pop("prev_state", None)
|
150 |
return merged
|
151 |
|
@@ -161,11 +179,14 @@ def inspect_node(state: AgentState) -> AgentState:
|
|
161 |
β’ Return {"final_answer":"<final>"} if done, OR
|
162 |
β’ Return exactly one tool key to run next (wiki_query / ocr_path / excel_path & excel_sheet_name / audio_path).
|
163 |
"""
|
|
|
164 |
# 0) If we've already called tools too many times, force a final answer:
|
165 |
if state.get("tool_counter", 0) >= 5:
|
166 |
return {
|
167 |
"messages": state["messages"],
|
168 |
-
"final_answer": state.get(
|
|
|
|
|
169 |
}
|
170 |
|
171 |
messages_for_llm = []
|
@@ -219,14 +240,25 @@ def inspect_node(state: AgentState) -> AgentState:
|
|
219 |
if isinstance(parsed, dict):
|
220 |
# If GPT gave a final_answer, we finish here
|
221 |
if "final_answer" in parsed:
|
222 |
-
return {
|
|
|
|
|
|
|
223 |
|
224 |
-
# If GPT requested exactly one valid tool,
|
225 |
-
valid_keys = {
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
requested_keys = set(parsed.keys()) & valid_keys
|
227 |
if len(requested_keys) == 1:
|
228 |
-
|
229 |
-
|
|
|
|
|
230 |
for k in requested_keys:
|
231 |
clean[k] = parsed[k]
|
232 |
return clean
|
@@ -238,7 +270,10 @@ def inspect_node(state: AgentState) -> AgentState:
|
|
238 |
return {"messages": new_msgs, "final_answer": ia}
|
239 |
|
240 |
# If there is no interim either, we cannot proceed
|
241 |
-
return {
|
|
|
|
|
|
|
242 |
|
243 |
|
244 |
# βββ 6) finalize_node βββ
|
@@ -274,7 +309,7 @@ def route_plan(plan_out: AgentState) -> str:
|
|
274 |
graph.add_conditional_edges(
|
275 |
"plan",
|
276 |
route_plan,
|
277 |
-
{"store_prev_state": "store_prev_state", "finalize": "finalize"}
|
278 |
)
|
279 |
|
280 |
# store_prev_state β tools
|
@@ -295,7 +330,7 @@ def route_inspect(inspect_out: AgentState) -> str:
|
|
295 |
graph.add_conditional_edges(
|
296 |
"inspect",
|
297 |
route_inspect,
|
298 |
-
{"store_prev_state": "store_prev_state", "finalize": "finalize"}
|
299 |
)
|
300 |
|
301 |
# finalize β END
|
@@ -327,7 +362,7 @@ def respond_to_input(user_input: str, task_id) -> str:
|
|
327 |
initial_state: AgentState = {
|
328 |
"messages": [system_msg, human_msg],
|
329 |
"task_id": task_id,
|
330 |
-
"tool_counter": 0
|
331 |
}
|
332 |
final_state = compiled_graph.invoke(initial_state)
|
333 |
return final_state.get("final_answer", "Error: No final answer generated.")
|
|
|
24 |
|
25 |
llm = ChatOpenAI(model_name="gpt-4o-mini")
|
26 |
|
27 |
+
# βββ 1) plan_node βββ
|
28 |
# βββ 1) plan_node βββ
|
29 |
def plan_node(state: AgentState) -> AgentState:
|
30 |
"""
|
31 |
Step 1: Ask GPT to draft a concise direct answer (INTERIM_ANSWER),
|
32 |
then decide if it's confident enough to stop or if it needs one tool.
|
33 |
+
If confident: return {"final_answer":"<answer>"}
|
34 |
+
Otherwise: return exactly one of
|
35 |
+
{"wiki_query":"..."},
|
36 |
+
{"ocr_path":"..."},
|
37 |
+
{"excel_path":"...", "excel_sheet_name":"..."},
|
38 |
+
{"audio_path":"..."}
|
39 |
"""
|
40 |
prior_msgs = state.get("messages", [])
|
41 |
user_input = ""
|
|
|
72 |
try:
|
73 |
parsed = json.loads(llm_out)
|
74 |
if isinstance(parsed, dict):
|
75 |
+
# Build a fresh state that carries only messages + tool_counter
|
76 |
partial: AgentState = {
|
77 |
"messages": new_msgs,
|
78 |
+
"tool_counter": state.get("tool_counter", 0),
|
79 |
}
|
|
|
80 |
allowed_keys = {
|
81 |
"final_answer",
|
82 |
"wiki_query",
|
83 |
"ocr_path",
|
84 |
"excel_path",
|
85 |
"excel_sheet_name",
|
86 |
+
"audio_path",
|
87 |
}
|
88 |
for k, v in parsed.items():
|
89 |
if k in allowed_keys:
|
|
|
92 |
except json.JSONDecodeError:
|
93 |
pass
|
94 |
|
95 |
+
# Fallback: interpret as a final answer (no further tools)
|
96 |
return {
|
97 |
"messages": new_msgs,
|
98 |
+
"final_answer": "Sorry, I could not parse your intent.",
|
99 |
}
|
100 |
|
101 |
|
|
|
112 |
- ocr_path β ocr_image_tool
|
113 |
- excel_path β parse_excel_tool
|
114 |
- audio_path β audio_transcriber_tool
|
115 |
+
- (web_search_query path is still here but not exposed to the LLM)
|
116 |
"""
|
117 |
tool_counter = state.get("tool_counter", 0)
|
118 |
if tool_counter > 5:
|
|
|
120 |
tool_counter += 1
|
121 |
state["tool_counter"] = tool_counter
|
122 |
|
|
|
123 |
if state.get("wiki_query"):
|
124 |
return wikipedia_search_tool(state)
|
125 |
if state.get("web_search_query"):
|
|
|
130 |
return parse_excel_tool(state)
|
131 |
if state.get("audio_path"):
|
132 |
return audio_transcriber_tool(state)
|
133 |
+
|
134 |
+
return {} # nothing to do
|
135 |
|
136 |
|
137 |
# βββ 4) merge_tool_output βββ
|
|
|
142 |
prev = state.get("prev_state", {}).copy()
|
143 |
|
144 |
# Drop any lingering request keys so they don't persist
|
145 |
+
for dead in [
|
146 |
+
"wiki_query",
|
147 |
+
"web_search_query",
|
148 |
+
"ocr_path",
|
149 |
+
"excel_path",
|
150 |
+
"excel_sheet_name",
|
151 |
+
"audio_path",
|
152 |
+
]:
|
153 |
prev.pop(dead, None)
|
154 |
|
155 |
merged = {**prev, **state}
|
156 |
+
# Also drop them from the merged result
|
157 |
+
for dead in [
|
158 |
+
"wiki_query",
|
159 |
+
"web_search_query",
|
160 |
+
"ocr_path",
|
161 |
+
"excel_path",
|
162 |
+
"excel_sheet_name",
|
163 |
+
"audio_path",
|
164 |
+
]:
|
165 |
+
merged.pop(dead, None)
|
166 |
+
|
167 |
merged.pop("prev_state", None)
|
168 |
return merged
|
169 |
|
|
|
179 |
β’ Return {"final_answer":"<final>"} if done, OR
|
180 |
β’ Return exactly one tool key to run next (wiki_query / ocr_path / excel_path & excel_sheet_name / audio_path).
|
181 |
"""
|
182 |
+
|
183 |
# 0) If we've already called tools too many times, force a final answer:
|
184 |
if state.get("tool_counter", 0) >= 5:
|
185 |
return {
|
186 |
"messages": state["messages"],
|
187 |
+
"final_answer": state.get(
|
188 |
+
"final_answer", "ERROR: no interim_answer to finalize."
|
189 |
+
),
|
190 |
}
|
191 |
|
192 |
messages_for_llm = []
|
|
|
240 |
if isinstance(parsed, dict):
|
241 |
# If GPT gave a final_answer, we finish here
|
242 |
if "final_answer" in parsed:
|
243 |
+
return {
|
244 |
+
"messages": new_msgs,
|
245 |
+
"final_answer": parsed["final_answer"],
|
246 |
+
}
|
247 |
|
248 |
+
# If GPT requested exactly one valid tool, return only that key + carry tool_counter
|
249 |
+
valid_keys = {
|
250 |
+
"wiki_query",
|
251 |
+
"ocr_path",
|
252 |
+
"excel_path",
|
253 |
+
"excel_sheet_name",
|
254 |
+
"audio_path",
|
255 |
+
}
|
256 |
requested_keys = set(parsed.keys()) & valid_keys
|
257 |
if len(requested_keys) == 1:
|
258 |
+
clean: AgentState = {
|
259 |
+
"messages": new_msgs,
|
260 |
+
"tool_counter": state.get("tool_counter", 0),
|
261 |
+
}
|
262 |
for k in requested_keys:
|
263 |
clean[k] = parsed[k]
|
264 |
return clean
|
|
|
270 |
return {"messages": new_msgs, "final_answer": ia}
|
271 |
|
272 |
# If there is no interim either, we cannot proceed
|
273 |
+
return {
|
274 |
+
"messages": new_msgs,
|
275 |
+
"final_answer": "ERROR: could not parse inspect decision.",
|
276 |
+
}
|
277 |
|
278 |
|
279 |
# βββ 6) finalize_node βββ
|
|
|
309 |
graph.add_conditional_edges(
|
310 |
"plan",
|
311 |
route_plan,
|
312 |
+
{"store_prev_state": "store_prev_state", "finalize": "finalize"},
|
313 |
)
|
314 |
|
315 |
# store_prev_state β tools
|
|
|
330 |
graph.add_conditional_edges(
|
331 |
"inspect",
|
332 |
route_inspect,
|
333 |
+
{"store_prev_state": "store_prev_state", "finalize": "finalize"},
|
334 |
)
|
335 |
|
336 |
# finalize β END
|
|
|
362 |
initial_state: AgentState = {
|
363 |
"messages": [system_msg, human_msg],
|
364 |
"task_id": task_id,
|
365 |
+
"tool_counter": 0,
|
366 |
}
|
367 |
final_state = compiled_graph.invoke(initial_state)
|
368 |
return final_state.get("final_answer", "Error: No final answer generated.")
|