Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -26,49 +26,49 @@ tool_node = ToolNode([ocr_image_tool, parse_excel_tool, web_search_tool])
|
|
26 |
llm = ChatOpenAI(model_name="gpt-4.1-mini", temperature=0.0)
|
27 |
|
28 |
# agent = create_react_agent(model=llm, tools=tool_node)
|
29 |
-
|
30 |
-
# ─── Revised plan_node with NO extra arguments ───
|
31 |
def plan_node(state: AgentState) -> AgentState:
|
32 |
"""
|
33 |
-
|
34 |
-
We
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
37 |
"""
|
38 |
-
# 1) Grab
|
39 |
prior_msgs = state.get("messages", [])
|
40 |
|
41 |
-
# 2)
|
42 |
-
# If there is no HumanMessage, we treat user_input as empty.
|
43 |
user_input = ""
|
44 |
for msg in reversed(prior_msgs):
|
45 |
if isinstance(msg, HumanMessage):
|
46 |
user_input = msg.content
|
47 |
break
|
48 |
|
49 |
-
# 3) Build
|
50 |
new_history = prior_msgs.copy()
|
51 |
|
52 |
-
# 4)
|
53 |
explanation = SystemMessage(
|
54 |
content=(
|
55 |
-
"You can set exactly one of
|
56 |
-
" • web_search_query: <search terms
|
57 |
-
" • ocr_path: <path to an image file
|
58 |
-
" • excel_path: <path to a .xlsx file
|
59 |
-
" • excel_sheet_name: <sheet name
|
60 |
"Or, if no tool is needed, set final_answer: <your answer>.\n"
|
61 |
"Example: {'web_search_query':'Mercedes Sosa discography'}\n"
|
62 |
"Respond with only that Python dict literal—no extra text or explanation."
|
63 |
)
|
64 |
)
|
65 |
|
66 |
-
# 5)
|
67 |
prompt_messages = new_history + [explanation]
|
68 |
llm_response = llm(prompt_messages)
|
69 |
llm_out = llm_response.content.strip()
|
70 |
|
71 |
-
# 6)
|
72 |
try:
|
73 |
parsed = eval(llm_out, {}, {})
|
74 |
if isinstance(parsed, dict):
|
@@ -93,18 +93,20 @@ def plan_node(state: AgentState) -> AgentState:
|
|
93 |
"final_answer": "Sorry, I could not parse your intent."
|
94 |
}
|
95 |
|
96 |
-
|
97 |
-
# ─── Revised finalize_node with NO extra arguments ───
|
98 |
def finalize_node(state: AgentState) -> AgentState:
|
99 |
"""
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
103 |
"""
|
104 |
# 1) Copy the existing BaseMessage list
|
105 |
history = state.get("messages", []).copy()
|
106 |
|
107 |
-
# 2)
|
108 |
if "web_search_result" in state and state["web_search_result"] is not None:
|
109 |
history.append(SystemMessage(content=f"WEB_SEARCH_RESULT: {state['web_search_result']}"))
|
110 |
if "ocr_result" in state and state["ocr_result"] is not None:
|
@@ -112,39 +114,32 @@ def finalize_node(state: AgentState) -> AgentState:
|
|
112 |
if "excel_result" in state and state["excel_result"] is not None:
|
113 |
history.append(SystemMessage(content=f"EXCEL_RESULT: {state['excel_result']}"))
|
114 |
|
115 |
-
# 3) If plan_node already set final_answer, just return it
|
116 |
if state.get("final_answer") is not None:
|
117 |
return {"final_answer": state["final_answer"]}
|
118 |
|
119 |
-
# 4) Otherwise, ask the LLM to
|
120 |
history.append(SystemMessage(content="Please provide the final answer now."))
|
121 |
llm_response = llm(history)
|
122 |
return {"final_answer": llm_response.content.strip()}
|
123 |
|
|
|
124 |
tool_node = ToolNode([web_search_tool, ocr_image_tool, parse_excel_tool])
|
125 |
|
126 |
-
# ─── 5) Build the StateGraph ───
|
127 |
graph = StateGraph(AgentState)
|
128 |
|
129 |
-
# 5.a) Register
|
130 |
graph.add_node("plan", plan_node)
|
131 |
graph.add_node("tools", tool_node)
|
132 |
graph.add_node("run_tools", run_tools)
|
133 |
graph.add_node("finalize", finalize_node)
|
134 |
|
135 |
-
# 5.b) START → plan
|
136 |
graph.add_edge(START, "plan")
|
137 |
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
def route_plan(plan_out: AgentState) -> str:
|
144 |
-
"""
|
145 |
-
plan_out is exactly what plan_node returned (a partial AgentState).
|
146 |
-
If it set any of the tool-request keys, route to 'tools'; otherwise 'finalize'.
|
147 |
-
"""
|
148 |
if plan_out.get("web_search_query") or plan_out.get("ocr_path") or plan_out.get("excel_path"):
|
149 |
return "tools"
|
150 |
return "finalize"
|
@@ -155,57 +150,57 @@ graph.add_conditional_edges(
|
|
155 |
{"tools": "tools", "finalize": "finalize"}
|
156 |
)
|
157 |
|
158 |
-
|
159 |
-
|
160 |
graph.add_edge("tools", "run_tools")
|
161 |
|
162 |
-
# 5.e) run_tools → finalize
|
163 |
graph.add_edge("run_tools", "finalize")
|
164 |
|
165 |
-
# 5.f) finalize → END
|
166 |
graph.add_edge("finalize", END)
|
167 |
|
168 |
compiled_graph = graph.compile()
|
169 |
|
|
|
170 |
def respond_to_input(user_input: str) -> str:
|
171 |
"""
|
172 |
-
|
173 |
-
|
174 |
"""
|
175 |
-
# 1)
|
176 |
system_msg = SystemMessage(
|
177 |
content=(
|
178 |
"You have access to exactly these tools:\n"
|
179 |
-
" 1) web_search(query:str) → Returns
|
180 |
-
" 2) parse_excel(path:str, sheet_name:str) → Reads an Excel file
|
181 |
-
" 3) ocr_image(path:str) → Runs OCR on an image
|
182 |
-
"If you need a tool, set exactly one of these keys in a Python
|
183 |
" • web_search_query: <search terms>\n"
|
184 |
" • ocr_path: <path to image>\n"
|
185 |
" • excel_path: <path to xlsx>\n"
|
186 |
" • excel_sheet_name: <sheet name>\n"
|
187 |
"Otherwise, set final_answer: <your answer>.\n"
|
188 |
-
"Respond with that Python dict literal—no extra text
|
189 |
)
|
190 |
)
|
191 |
-
|
192 |
-
# 2) Wrap the user_input in a HumanMessage
|
193 |
human_msg = HumanMessage(content=user_input)
|
194 |
|
195 |
-
# 3) Build
|
196 |
-
initial_state: AgentState = {
|
197 |
-
"messages": [system_msg, human_msg],
|
198 |
-
"user_input": user_input
|
199 |
-
}
|
200 |
|
201 |
-
# 4) Invoke the
|
202 |
final_state = compiled_graph.invoke(initial_state)
|
203 |
|
204 |
-
# 5) Return the
|
205 |
return final_state.get("final_answer", "Error: No final answer generated.")
|
206 |
|
207 |
-
|
208 |
-
|
|
|
|
|
|
|
|
|
209 |
class BasicAgent:
|
210 |
def __init__(self):
|
211 |
print("BasicAgent initialized.")
|
|
|
26 |
llm = ChatOpenAI(model_name="gpt-4.1-mini", temperature=0.0)
|
27 |
|
28 |
# agent = create_react_agent(model=llm, tools=tool_node)
|
|
|
|
|
29 |
def plan_node(state: AgentState) -> AgentState:
|
30 |
"""
|
31 |
+
`state["messages"]` must already end in a HumanMessage containing the user’s question.
|
32 |
+
We inspect that last HumanMessage and ask the LLM to set exactly one key:
|
33 |
+
• web_search_query
|
34 |
+
• ocr_path
|
35 |
+
• excel_path (and excel_sheet_name)
|
36 |
+
• final_answer
|
37 |
+
The LLM must return a bare Python‐dict literal containing exactly that one key.
|
38 |
"""
|
39 |
+
# 1) Grab prior BaseMessage list
|
40 |
prior_msgs = state.get("messages", [])
|
41 |
|
42 |
+
# 2) Extract the last HumanMessage content (the user question)
|
|
|
43 |
user_input = ""
|
44 |
for msg in reversed(prior_msgs):
|
45 |
if isinstance(msg, HumanMessage):
|
46 |
user_input = msg.content
|
47 |
break
|
48 |
|
49 |
+
# 3) Build new_history = copy of prior_msgs (it already contains that HumanMessage)
|
50 |
new_history = prior_msgs.copy()
|
51 |
|
52 |
+
# 4) Append a SystemMessage explaining how to return exactly one key
|
53 |
explanation = SystemMessage(
|
54 |
content=(
|
55 |
+
"You can set exactly one of these keys in a Python dict (and nothing else):\n"
|
56 |
+
" • web_search_query: <search terms>\n"
|
57 |
+
" • ocr_path: <path to an image file>\n"
|
58 |
+
" • excel_path: <path to a .xlsx file>\n"
|
59 |
+
" • excel_sheet_name: <sheet name>\n"
|
60 |
"Or, if no tool is needed, set final_answer: <your answer>.\n"
|
61 |
"Example: {'web_search_query':'Mercedes Sosa discography'}\n"
|
62 |
"Respond with only that Python dict literal—no extra text or explanation."
|
63 |
)
|
64 |
)
|
65 |
|
66 |
+
# 5) Call the LLM with [ all previous BaseMessages ] + explanation
|
67 |
prompt_messages = new_history + [explanation]
|
68 |
llm_response = llm(prompt_messages)
|
69 |
llm_out = llm_response.content.strip()
|
70 |
|
71 |
+
# 6) Try to parse the LLM output as a dict
|
72 |
try:
|
73 |
parsed = eval(llm_out, {}, {})
|
74 |
if isinstance(parsed, dict):
|
|
|
93 |
"final_answer": "Sorry, I could not parse your intent."
|
94 |
}
|
95 |
|
96 |
+
# ─── 3) Define finalize_node (only takes state) ───
|
|
|
97 |
def finalize_node(state: AgentState) -> AgentState:
|
98 |
"""
|
99 |
+
By this time:
|
100 |
+
- state['messages'] is a list of BaseMessage (SystemMessage/HumanMessage/AIMessage).
|
101 |
+
- Possibly state['web_search_result'] or state['ocr_result'] or state['excel_result'] is set.
|
102 |
+
- Or state['final_answer'] is already set (if plan_node decided no tool was needed).
|
103 |
+
|
104 |
+
We append any tool results as SystemMessages, then prompt the LLM for one final answer.
|
105 |
"""
|
106 |
# 1) Copy the existing BaseMessage list
|
107 |
history = state.get("messages", []).copy()
|
108 |
|
109 |
+
# 2) Append each tool result as a SystemMessage, if present
|
110 |
if "web_search_result" in state and state["web_search_result"] is not None:
|
111 |
history.append(SystemMessage(content=f"WEB_SEARCH_RESULT: {state['web_search_result']}"))
|
112 |
if "ocr_result" in state and state["ocr_result"] is not None:
|
|
|
114 |
if "excel_result" in state and state["excel_result"] is not None:
|
115 |
history.append(SystemMessage(content=f"EXCEL_RESULT: {state['excel_result']}"))
|
116 |
|
117 |
+
# 3) If plan_node already set a final_answer, just return it directly
|
118 |
if state.get("final_answer") is not None:
|
119 |
return {"final_answer": state["final_answer"]}
|
120 |
|
121 |
+
# 4) Otherwise, ask the LLM to produce the final answer
|
122 |
history.append(SystemMessage(content="Please provide the final answer now."))
|
123 |
llm_response = llm(history)
|
124 |
return {"final_answer": llm_response.content.strip()}
|
125 |
|
126 |
+
# ─── 4) Wrap the low‐level tool wrappers in a ToolNode ───
|
127 |
tool_node = ToolNode([web_search_tool, ocr_image_tool, parse_excel_tool])
|
128 |
|
129 |
+
# ─── 5) Build and compile the StateGraph ───
|
130 |
graph = StateGraph(AgentState)
|
131 |
|
132 |
+
# 5.a) Register each node
|
133 |
graph.add_node("plan", plan_node)
|
134 |
graph.add_node("tools", tool_node)
|
135 |
graph.add_node("run_tools", run_tools)
|
136 |
graph.add_node("finalize", finalize_node)
|
137 |
|
138 |
+
# 5.b) Wire START → plan
|
139 |
graph.add_edge(START, "plan")
|
140 |
|
141 |
+
# 5.c) plan → conditional: if any tool key is set, go to "tools"; otherwise "finalize"
|
|
|
|
|
|
|
|
|
142 |
def route_plan(plan_out: AgentState) -> str:
|
|
|
|
|
|
|
|
|
143 |
if plan_out.get("web_search_query") or plan_out.get("ocr_path") or plan_out.get("excel_path"):
|
144 |
return "tools"
|
145 |
return "finalize"
|
|
|
150 |
{"tools": "tools", "finalize": "finalize"}
|
151 |
)
|
152 |
|
153 |
+
# 5.d) Wire tools → run_tools
|
|
|
154 |
graph.add_edge("tools", "run_tools")
|
155 |
|
156 |
+
# 5.e) Wire run_tools → finalize
|
157 |
graph.add_edge("run_tools", "finalize")
|
158 |
|
159 |
+
# 5.f) Wire finalize → END
|
160 |
graph.add_edge("finalize", END)
|
161 |
|
162 |
compiled_graph = graph.compile()
|
163 |
|
164 |
+
# ─── 6) Define respond_to_input ───
|
165 |
def respond_to_input(user_input: str) -> str:
|
166 |
"""
|
167 |
+
Start with a SystemMessage + HumanMessage; then let the graph run:
|
168 |
+
plan_node → tools → run_tools → finalize_node. Return final_answer.
|
169 |
"""
|
170 |
+
# 1) SystemMessage describing the tools
|
171 |
system_msg = SystemMessage(
|
172 |
content=(
|
173 |
"You have access to exactly these tools:\n"
|
174 |
+
" 1) web_search(query:str) → Returns DuckDuckGo results.\n"
|
175 |
+
" 2) parse_excel(path:str, sheet_name:str) → Reads an Excel file.\n"
|
176 |
+
" 3) ocr_image(path:str) → Runs OCR on an image.\n\n"
|
177 |
+
"If you need a tool, set exactly one of these keys in a Python dict:\n"
|
178 |
" • web_search_query: <search terms>\n"
|
179 |
" • ocr_path: <path to image>\n"
|
180 |
" • excel_path: <path to xlsx>\n"
|
181 |
" • excel_sheet_name: <sheet name>\n"
|
182 |
"Otherwise, set final_answer: <your answer>.\n"
|
183 |
+
"Respond with only that Python dict literal—no extra text."
|
184 |
)
|
185 |
)
|
186 |
+
# 2) HumanMessage wrapping the user’s question
|
|
|
187 |
human_msg = HumanMessage(content=user_input)
|
188 |
|
189 |
+
# 3) Build initial_state so that "messages" = [system_msg, human_msg]
|
190 |
+
initial_state: AgentState = {"messages": [system_msg, human_msg]}
|
|
|
|
|
|
|
191 |
|
192 |
+
# 4) Invoke the graph (no second argument needed)
|
193 |
final_state = compiled_graph.invoke(initial_state)
|
194 |
|
195 |
+
# 5) Return the "final_answer" or a fallback
|
196 |
return final_state.get("final_answer", "Error: No final answer generated.")
|
197 |
|
198 |
+
# ─── 7) BasicAgent wrapper ───
|
199 |
+
class BasicAgent:
|
200 |
+
def __init__(self):
|
201 |
+
print("BasicAgent initialized.")
|
202 |
+
def __call__(self, question: str) -> str:
|
203 |
+
return respond_to_input(question)
|
204 |
class BasicAgent:
|
205 |
def __init__(self):
|
206 |
print("BasicAgent initialized.")
|