Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -22,79 +22,118 @@ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
22 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
23 |
|
24 |
class AgentState(TypedDict):
|
|
|
25 |
messages: Annotated[list[str], add_messages]
|
26 |
-
|
27 |
-
|
|
|
|
|
28 |
|
29 |
-
# 2)
|
30 |
llm = ChatOpenAI(model_name="gpt-4.1-mini")
|
31 |
|
32 |
def agent_node(state: AgentState, user_input: str) -> AgentState:
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
#
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
try:
|
40 |
-
parsed = eval(
|
41 |
if isinstance(parsed, dict) and parsed.get("tool"):
|
42 |
-
|
43 |
-
except:
|
44 |
-
|
45 |
|
|
|
46 |
return {
|
47 |
-
"messages":
|
48 |
-
"
|
49 |
-
"
|
50 |
}
|
51 |
|
52 |
-
# 3)
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
-
|
56 |
-
#
|
57 |
-
tool_result: str = t_node.run(agent_output)
|
58 |
return {
|
59 |
-
"messages": [f"TOOL
|
60 |
-
"
|
61 |
-
"
|
62 |
}
|
63 |
|
64 |
-
# 4) Build
|
65 |
graph = StateGraph(AgentState)
|
66 |
graph.add_node("agent", agent_node)
|
67 |
-
graph.add_node("tools",
|
68 |
|
69 |
-
# 5) START →
|
70 |
graph.add_edge(START, "agent")
|
71 |
|
72 |
-
# 6)
|
73 |
graph.add_edge("tools", "agent")
|
74 |
|
75 |
-
# 7) Conditional
|
76 |
-
def route_agent(state: AgentState,
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
return "tools"
|
80 |
return "final"
|
81 |
|
82 |
graph.add_conditional_edges(
|
83 |
-
"agent",
|
84 |
-
route_agent,
|
85 |
{
|
86 |
-
"tools": "tools",
|
87 |
-
"final": END
|
88 |
}
|
89 |
)
|
90 |
|
91 |
-
# 8) Compile the graph
|
92 |
compiled_graph = graph.compile()
|
93 |
|
|
|
94 |
def respond_to_input(user_input: str) -> str:
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
|
100 |
class BasicAgent:
|
|
|
22 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
23 |
|
24 |
class AgentState(TypedDict):
|
25 |
+
# We store the full chat history as a list of strings.
|
26 |
messages: Annotated[list[str], add_messages]
|
27 |
+
# If the agent requests a tool, it will fill in:
|
28 |
+
tool_request: dict | None
|
29 |
+
# Whenever a tool runs, its result goes here:
|
30 |
+
tool_result: str | None
|
31 |
|
32 |
+
# 2) Wrap ChatOpenAI in a function whose signature is (state, user_input) → new_state
|
33 |
llm = ChatOpenAI(model_name="gpt-4.1-mini")
|
34 |
|
35 |
def agent_node(state: AgentState, user_input: str) -> AgentState:
|
36 |
+
"""
|
37 |
+
This function replaces raw ChatOpenAI. It must accept (state, user_input)
|
38 |
+
and return a new AgentState dict.
|
39 |
+
"""
|
40 |
+
# 2.a) Grab prior chat history (empty list on first turn)
|
41 |
+
prior_msgs = state.get("messages", [])
|
42 |
+
# 2.b) Append the new user_input
|
43 |
+
chat_history = prior_msgs + [f"USER: {user_input}"]
|
44 |
+
# 2.c) Ask the LLM for a response
|
45 |
+
llm_output = llm(chat_history).content
|
46 |
+
|
47 |
+
# 2.d) Check if the LLM output is valid Python dict literal indicating a tool call.
|
48 |
+
# If it is, parse it and stash in state["tool_request"]. Otherwise, no tool.
|
49 |
+
tool_req = None
|
50 |
try:
|
51 |
+
parsed = eval(llm_output)
|
52 |
if isinstance(parsed, dict) and parsed.get("tool"):
|
53 |
+
tool_req = parsed
|
54 |
+
except Exception:
|
55 |
+
tool_req = None
|
56 |
|
57 |
+
# 2.e) Construct the new state:
|
58 |
return {
|
59 |
+
"messages": chat_history + [f"ASSISTANT: {llm_output}"],
|
60 |
+
"tool_request": tool_req,
|
61 |
+
"tool_result": None # will be filled by the tool_node if invoked
|
62 |
}
|
63 |
|
64 |
+
# 3) Create a ToolNode for all three tools, then wrap it in a function
|
65 |
+
# whose signature is also (state, tool_request) → new_state.
|
66 |
+
underlying_tool_node = ToolNode([ocr_image, parse_excel, web_search])
|
67 |
+
|
68 |
+
def tool_node(state: AgentState, tool_request: dict) -> AgentState:
|
69 |
+
"""
|
70 |
+
The graph will only call this when tool_request is a dict like
|
71 |
+
{"tool": "...", "path": "...", ...}
|
72 |
+
Use the underlying ToolNode to run it and store the result.
|
73 |
+
"""
|
74 |
+
# 3.a) Run the actual ToolNode on that dict:
|
75 |
+
result_text = underlying_tool_node.run(tool_request)
|
76 |
|
77 |
+
# 3.b) Update state.messages to note the tool’s output,
|
78 |
+
# and clear tool_request so we don’t loop.
|
|
|
79 |
return {
|
80 |
+
"messages": [f"TOOL ({tool_request['tool']}): {result_text}"],
|
81 |
+
"tool_request": None,
|
82 |
+
"tool_result": result_text
|
83 |
}
|
84 |
|
85 |
+
# 4) Build and register nodes exactly as in the tutorial
|
86 |
graph = StateGraph(AgentState)
|
87 |
graph.add_node("agent", agent_node)
|
88 |
+
graph.add_node("tools", tool_node)
|
89 |
|
90 |
+
# 5) Simple START → “agent” edge (no third argument needed)
|
91 |
graph.add_edge(START, "agent")
|
92 |
|
93 |
+
# 6) Simple “tools” → “agent” edge (again, no third argument)
|
94 |
graph.add_edge("tools", "agent")
|
95 |
|
96 |
+
# 7) Conditional branching out of “agent,” exactly like the tutorial
|
97 |
+
def route_agent(state: AgentState, agent_out):
|
98 |
+
"""
|
99 |
+
When the LLM (agent_node) runs, it returns an AgentState where
|
100 |
+
- state["tool_request"] is either a dict (if a tool was asked) or None.
|
101 |
+
- state["tool_result"] is always None on entry to agent_node.
|
102 |
+
|
103 |
+
route_agent must look at that returned state (called agent_out)
|
104 |
+
and decide:
|
105 |
+
• If agent_out["tool_request"] is not None, go to "tools".
|
106 |
+
• Otherwise, terminate (go to END).
|
107 |
+
"""
|
108 |
+
if agent_out.get("tool_request") is not None:
|
109 |
return "tools"
|
110 |
return "final"
|
111 |
|
112 |
graph.add_conditional_edges(
|
113 |
+
"agent", # source
|
114 |
+
route_agent, # routing function (signature: (state, agent_out) → str key)
|
115 |
{
|
116 |
+
"tools": "tools", # if route_agent(...) == "tools", transition to node "tools"
|
117 |
+
"final": END # if route_agent(...) == "final", stop execution
|
118 |
}
|
119 |
)
|
120 |
|
121 |
+
# 8) Compile the graph (now graph.run(...) will work)
|
122 |
compiled_graph = graph.compile()
|
123 |
|
124 |
+
# 9) Define respond_to_input so that Gradio (and the Hugging Face submission) can call it
|
125 |
def respond_to_input(user_input: str) -> str:
|
126 |
+
# Start with an empty state
|
127 |
+
initial_state: AgentState = {
|
128 |
+
"messages": [],
|
129 |
+
"tool_request": None,
|
130 |
+
"tool_result": None
|
131 |
+
}
|
132 |
+
# Use .run(initial_state, user_input) in v0.3.x
|
133 |
+
final_state = compiled_graph.run(initial_state, user_input)
|
134 |
+
# The “final” on END means agent_out has no more tool calls and finished reasoning
|
135 |
+
# We return the last assistant message from state["messages"]:
|
136 |
+
return final_state["messages"][-1].replace("ASSISTANT: ", "")
|
137 |
|
138 |
|
139 |
class BasicAgent:
|