|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
import os |
|
from mobile_sam import SamAutomaticMaskGenerator, SamPredictor, sam_model_registry |
|
from PIL import ImageDraw |
|
from utils.tools import box_prompt, format_results, point_prompt |
|
from utils.tools_gradio import fast_process |
|
|
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
sam_checkpoint = "./mobile_sam.pt" |
|
model_type = "vit_t" |
|
|
|
mobile_sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) |
|
mobile_sam = mobile_sam.to(device=device) |
|
mobile_sam.eval() |
|
|
|
mask_generator = SamAutomaticMaskGenerator(mobile_sam) |
|
predictor = SamPredictor(mobile_sam) |
|
|
|
|
|
title = "<center><strong><font size='8'>Faster Segment Anything(MobileSAM)<font></strong></center>" |
|
|
|
description_e = """This is a demo on Github project [Faster Segment Anything(MobileSAM) Model](https://github.com/ChaoningZhang/MobileSAM). Welcome to give a star βοΈ to it. |
|
|
|
π― Upload an Image, segment it with Faster Segment Anything (Everything mode). The other modes will come soon. |
|
|
|
βοΈ It takes about 5~ seconds to generate segment results. The concurrency_count of queue is 1, please wait for a moment when it is crowded. |
|
|
|
π To get faster results, you can use a smaller input size and leave high_visual_quality unchecked. |
|
|
|
π£ You can also obtain the segmentation results of any Image through this Colab: [](https://drive.google.com/file/d/1k6azd5wdOOYkFwi61uXoIHfP-qBzuoOu/view?usp=sharing) |
|
|
|
π Check out our [Model Card π](https://huggingface.co/dhkim2810/MobileSAM) |
|
|
|
π Most of our demo code is from [FastSAM Demo](https://huggingface.co/spaces/An-619/FastSAM). Huge thanks for AN-619. |
|
|
|
""" |
|
|
|
description_p = """ # π― Instructions for points mode |
|
This is a demo on Github project [Faster Segment Anything(MobileSAM) Model](https://github.com/ChaoningZhang/MobileSAM). Welcome to give a star βοΈ to it. |
|
|
|
π― Upload an Image, segment it with Faster Segment Anything (Everything mode). The other modes will come soon. |
|
|
|
βοΈ It takes about 5~ seconds to generate segment results. The concurrency_count of queue is 1, please wait for a moment when it is crowded. |
|
|
|
π To get faster results, you can use a smaller input size and leave high_visual_quality unchecked. |
|
|
|
π£ You can also obtain the segmentation results of any Image through this Colab: [](https://drive.google.com/file/d/1jibN6HTQcC4C2okoaKLRzHIo_pS0Eeom/view?usp=sharing) |
|
|
|
π Check out our [Model Card π](https://huggingface.co/dhkim2810/MobileSAM) |
|
|
|
|
|
|
|
1. Upload an image or choose an example. |
|
|
|
2. Choose the point label ('Add mask' means a positive point. 'Remove' Area means a negative point that is not segmented). |
|
|
|
3. Add points one by one on the image. |
|
|
|
4. Click the 'Segment with points prompt' button to get the segmentation results. |
|
|
|
**5. If you get Error, click the 'Clear points' button and try again may help.** |
|
|
|
""" |
|
|
|
examples = [ |
|
["assets/sa_8776.jpg"], |
|
["assets/sa_414.jpg"], |
|
["assets/sa_1309.jpg"], |
|
["assets/sa_11025.jpg"], |
|
["assets/sa_561.jpg"], |
|
["assets/sa_192.jpg"], |
|
["assets/sa_10039.jpg"], |
|
["assets/sa_862.jpg"], |
|
] |
|
|
|
default_example = examples[0] |
|
|
|
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }" |
|
|
|
|
|
@torch.no_grad() |
|
def segment_everything( |
|
image, |
|
input_size=1024, |
|
better_quality=False, |
|
withContours=True, |
|
use_retina=True, |
|
mask_random_color=True, |
|
): |
|
global mask_generator |
|
|
|
input_size = int(input_size) |
|
w, h = image.size |
|
scale = input_size / max(w, h) |
|
new_w = int(w * scale) |
|
new_h = int(h * scale) |
|
image = image.resize((new_w, new_h)) |
|
|
|
nd_image = np.array(image) |
|
annotations = mask_generator.generate(nd_image) |
|
|
|
fig = fast_process( |
|
annotations=annotations, |
|
image=image, |
|
device=device, |
|
scale=(1024 // input_size), |
|
better_quality=better_quality, |
|
mask_random_color=mask_random_color, |
|
bbox=None, |
|
use_retina=use_retina, |
|
withContours=withContours, |
|
) |
|
return fig |
|
|
|
|
|
def segment_with_points( |
|
image, |
|
input_size=1024, |
|
better_quality=False, |
|
withContours=True, |
|
use_retina=True, |
|
mask_random_color=True, |
|
): |
|
global global_points |
|
global global_point_label |
|
|
|
input_size = int(input_size) |
|
w, h = image.size |
|
scale = input_size / max(w, h) |
|
new_w = int(w * scale) |
|
new_h = int(h * scale) |
|
image = image.resize((new_w, new_h)) |
|
|
|
scaled_points = np.array([[int(x * scale) for x in point] for point in global_points]) |
|
global_point_label = np.array(global_point_label) |
|
|
|
nd_image = np.array(image) |
|
predictor.set_image(nd_image) |
|
masks, scores, logits = predictor.predict( |
|
point_coords=scaled_points, |
|
point_labels=global_point_label, |
|
multimask_output=True, |
|
) |
|
|
|
results = format_results(masks, scores, logits, 0) |
|
|
|
annotations, _ = point_prompt( |
|
results, scaled_points, global_point_label, new_h, new_w |
|
) |
|
annotations = np.array([annotations]) |
|
|
|
fig = fast_process( |
|
annotations=annotations, |
|
image=image, |
|
device=device, |
|
scale=(1024 // input_size), |
|
better_quality=better_quality, |
|
mask_random_color=mask_random_color, |
|
bbox=None, |
|
use_retina=use_retina, |
|
withContours=withContours, |
|
) |
|
|
|
global_points = [] |
|
global_point_label = [] |
|
|
|
return fig, image |
|
|
|
|
|
def get_points_with_draw(image, label, evt: gr.SelectData): |
|
global global_points |
|
global global_point_label |
|
|
|
x, y = evt.index[0], evt.index[1] |
|
point_radius, point_color = 15, (255, 255, 0) if label == "Add Mask" else ( |
|
255, |
|
0, |
|
255, |
|
) |
|
global_points.append([x, y]) |
|
global_point_label.append(1 if label == "Add Mask" else 0) |
|
|
|
print(x, y, label == "Add Mask") |
|
|
|
|
|
draw = ImageDraw.Draw(image) |
|
draw.ellipse( |
|
[(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)], |
|
fill=point_color, |
|
) |
|
return image |
|
|
|
|
|
cond_img_e = gr.Image(label="Input", value=default_example[0], type="pil") |
|
cond_img_p = gr.Image(label="Input with points", value=default_example[0], type="pil") |
|
|
|
segm_img_e = gr.Image(label="Segmented Image", interactive=False, type="pil") |
|
segm_img_p = gr.Image( |
|
label="Segmented Image with points", interactive=False, type="pil" |
|
) |
|
|
|
global_points = [] |
|
global_point_label = [] |
|
|
|
input_size_slider = gr.components.Slider( |
|
minimum=512, |
|
maximum=1024, |
|
value=1024, |
|
step=64, |
|
label="Input_size", |
|
info="Our model was trained on a size of 1024", |
|
) |
|
|
|
with gr.Blocks(css=css, title="Faster Segment Anything(MobileSAM)") as demo: |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
|
|
gr.Markdown(title) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with gr.Tab("Points mode"): |
|
|
|
with gr.Row(variant="panel"): |
|
with gr.Column(scale=1): |
|
cond_img_p.render() |
|
|
|
with gr.Column(scale=1): |
|
segm_img_p.render() |
|
|
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
add_or_remove = gr.Radio( |
|
["Add Mask", "Remove Area"], |
|
value="Add Mask", |
|
label="Point_label (foreground/background)", |
|
) |
|
|
|
with gr.Column(): |
|
segment_btn_p = gr.Button( |
|
"Segment with points prompt", variant="primary" |
|
) |
|
clear_btn_p = gr.Button("Clear points", variant="secondary") |
|
|
|
gr.Markdown("Try some of the examples below β¬οΈ") |
|
gr.Examples( |
|
examples=examples, |
|
inputs=[cond_img_p], |
|
|
|
|
|
|
|
examples_per_page=4, |
|
) |
|
|
|
with gr.Column(): |
|
|
|
gr.Markdown(description_p) |
|
|
|
cond_img_p.select(get_points_with_draw, [cond_img_p, add_or_remove], cond_img_p) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
segment_btn_p.click( |
|
segment_with_points, inputs=[cond_img_p], outputs=[segm_img_p, cond_img_p] |
|
) |
|
|
|
def clear(): |
|
return None, None |
|
|
|
def clear_text(): |
|
return None, None, None |
|
|
|
|
|
clear_btn_p.click(clear, outputs=[cond_img_p, segm_img_p]) |
|
|
|
demo.queue() |
|
demo.launch() |
|
|