Spaces:
Sleeping
Sleeping
namberino
commited on
Commit
·
805b803
1
Parent(s):
fd5723e
Initial commit
Browse files- main.py +312 -0
- requirements.txt +5 -0
main.py
ADDED
|
@@ -0,0 +1,312 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Gradio RAG -> MCQ app for HuggingFace Spaces
|
| 3 |
+
- Upload a PDF
|
| 4 |
+
- Chunk + embed using Together embeddings
|
| 5 |
+
- Store vectors in Chroma (local) and retrieve
|
| 6 |
+
- Call Together chat/completion to generate Vietnamese MCQs in JSON
|
| 7 |
+
|
| 8 |
+
Drop this file into a new HuggingFace Space (Gradio, Python). Add a requirements.txt (see README below) and set the secret TOGETHER_API_KEY in Space settings.
|
| 9 |
+
"""
|
| 10 |
+
|
| 11 |
+
import os
|
| 12 |
+
import json
|
| 13 |
+
import uuid
|
| 14 |
+
import tempfile
|
| 15 |
+
import pdfplumber
|
| 16 |
+
from together import Together
|
| 17 |
+
import chromadb
|
| 18 |
+
from chromadb.config import Settings
|
| 19 |
+
import gradio as gr
|
| 20 |
+
from typing import List
|
| 21 |
+
|
| 22 |
+
# ---------- Config - can be overridden from UI ----------
|
| 23 |
+
TOGETHER_API_KEY = os.getenv("TOGETHER_API_KEY")
|
| 24 |
+
DEFAULT_EMBEDDING_MODEL = "togethercomputer/m2-bert-80M-8k-retrieval"
|
| 25 |
+
DEFAULT_LLM_MODEL = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
| 26 |
+
DEFAULT_CHUNK_SIZE = 1200
|
| 27 |
+
DEFAULT_CHUNK_OVERLAP = 200
|
| 28 |
+
DEFAULT_K_RETRIEVE = 4
|
| 29 |
+
EMBED_BATCH = 64
|
| 30 |
+
|
| 31 |
+
# instantiate Together client (requires TOGETHER_API_KEY in env / HF Secrets)
|
| 32 |
+
if TOGETHER_API_KEY:
|
| 33 |
+
client = Together(api_key=TOGETHER_API_KEY)
|
| 34 |
+
else:
|
| 35 |
+
# allow local testing if user wants to set env var later
|
| 36 |
+
client = None
|
| 37 |
+
|
| 38 |
+
# -------- PDF -> text ----------
|
| 39 |
+
def extract_text_from_pdf(path: str) -> str:
|
| 40 |
+
text_parts = []
|
| 41 |
+
with pdfplumber.open(path) as pdf:
|
| 42 |
+
for page in pdf.pages:
|
| 43 |
+
page_text = page.extract_text()
|
| 44 |
+
if page_text:
|
| 45 |
+
text_parts.append(page_text)
|
| 46 |
+
return "\n\n".join(text_parts)
|
| 47 |
+
|
| 48 |
+
# -------- simple chunker ----------
|
| 49 |
+
def chunk_text(text: str, chunk_size=DEFAULT_CHUNK_SIZE, overlap=DEFAULT_CHUNK_OVERLAP) -> List[str]:
|
| 50 |
+
chunks = []
|
| 51 |
+
start = 0
|
| 52 |
+
L = len(text)
|
| 53 |
+
while start < L:
|
| 54 |
+
end = min(L, start + chunk_size)
|
| 55 |
+
chunk = text[start:end].strip()
|
| 56 |
+
chunks.append(chunk)
|
| 57 |
+
start = end - overlap
|
| 58 |
+
if start < 0:
|
| 59 |
+
start = 0
|
| 60 |
+
if start >= L:
|
| 61 |
+
break
|
| 62 |
+
return chunks
|
| 63 |
+
|
| 64 |
+
# -------- embeddings (Together) with batching ----------
|
| 65 |
+
def embed_texts(texts: List[str], model=DEFAULT_EMBEDDING_MODEL):
|
| 66 |
+
if client is None:
|
| 67 |
+
raise RuntimeError("Together client not initialized. Set TOGETHER_API_KEY in environment or Space secrets.")
|
| 68 |
+
embeddings = []
|
| 69 |
+
for i in range(0, len(texts), EMBED_BATCH):
|
| 70 |
+
batch = texts[i:i+EMBED_BATCH]
|
| 71 |
+
resp = client.embeddings.create(input=batch, model=model)
|
| 72 |
+
# resp.data is list; each item has .embedding
|
| 73 |
+
for item in resp.data:
|
| 74 |
+
embeddings.append(item.embedding)
|
| 75 |
+
return embeddings
|
| 76 |
+
|
| 77 |
+
# -------- chroma vectorstore setup / helpers ----------
|
| 78 |
+
def build_chroma_collection(name="pdf_docs", persist_directory="./chroma_db"):
|
| 79 |
+
# On Spaces, writes to the repo may be limited; chroma will attempt to use the path provided.
|
| 80 |
+
client_chroma = chromadb.Client(Settings(chroma_db_impl="duckdb+parquet", persist_directory=persist_directory))
|
| 81 |
+
# create or get collection
|
| 82 |
+
try:
|
| 83 |
+
collection = client_chroma.get_collection(name)
|
| 84 |
+
except Exception:
|
| 85 |
+
collection = client_chroma.create_collection(name)
|
| 86 |
+
return client_chroma, collection
|
| 87 |
+
|
| 88 |
+
def add_documents_to_vectorstore(collection, chunks: List[str], embeddings: List[List[float]]):
|
| 89 |
+
ids = [f"doc_{i}" for i in range(len(chunks))]
|
| 90 |
+
metadatas = [{"chunk_index": i} for i in range(len(chunks))]
|
| 91 |
+
# If collection already has docs with same ids, Chroma will append; it's common to recreate collection per-upload.
|
| 92 |
+
collection.add(ids=ids, documents=chunks, metadatas=metadatas, embeddings=embeddings)
|
| 93 |
+
|
| 94 |
+
# -------- retrieve top-k using chroma ----------
|
| 95 |
+
def retrieve_relevant_chunks(collection, query: str, k=DEFAULT_K_RETRIEVE, embedding_model=DEFAULT_EMBEDDING_MODEL):
|
| 96 |
+
q_emb = embed_texts([query], model=embedding_model)[0]
|
| 97 |
+
result = collection.query(query_embeddings=[q_emb], n_results=k, include=["documents", "metadatas", "distances"])
|
| 98 |
+
docs = result["documents"][0]
|
| 99 |
+
metas = result["metadatas"][0]
|
| 100 |
+
distances = result["distances"][0]
|
| 101 |
+
return list(zip(docs, metas, distances))
|
| 102 |
+
|
| 103 |
+
# -------- prompt template (Vietnamese) ----------
|
| 104 |
+
MCQ_PROMPT_VI = """
|
| 105 |
+
Bạn là một chuyên gia soạn câu hỏi trắc nghiệm (MCQ). SỬ DỤNG CHỈ các đoạn ngữ cảnh được cung cấp dưới đây (KHÔNG suy diễn/không thêm thông tin ngoài ngữ cảnh).
|
| 106 |
+
Tạo **một** câu hỏi trắc nghiệm có 4 lựa chọn (A, B, C, D), chỉ ra đáp án đúng (A/B/C/D) và viết 1 câu giải thích ngắn (1-2 câu).
|
| 107 |
+
**Bắt buộc:** output PHẢI LÀ **JSON duy nhất** theo schema sau (không có văn bản nào khác ngoài JSON):
|
| 108 |
+
|
| 109 |
+
{{
|
| 110 |
+
"question_id": "<mã duy nhất>",
|
| 111 |
+
"question": "<câu hỏi bằng tiếng Việt>",
|
| 112 |
+
"options": [
|
| 113 |
+
{{ "label": "A", "text": "..." }},
|
| 114 |
+
{{ "label": "B", "text": "..." }},
|
| 115 |
+
{{ "label": "C", "text": "..." }},
|
| 116 |
+
{{ "label": "D", "text": "..." }}
|
| 117 |
+
],
|
| 118 |
+
"answer": "A",
|
| 119 |
+
"explanation": "<giải thích ngắn bằng tiếng Việt>",
|
| 120 |
+
"source_chunks": [ "<chunk_index hoặc đoạn trích ngắn>", ... ]
|
| 121 |
+
}}
|
| 122 |
+
|
| 123 |
+
Ví dụ đầu ra (một mẫu JSON đúng; chỉ để mô tả định dạng):
|
| 124 |
+
{{
|
| 125 |
+
"question_id": "q_0001",
|
| 126 |
+
"question": "Nguyên tố nào là thành phần chính của vỏ trái đất?",
|
| 127 |
+
"options": [
|
| 128 |
+
{{ "label": "A", "text": "Sắt" }},
|
| 129 |
+
{{ "label": "B", "text": "Oxi" }},
|
| 130 |
+
{{ "label": "C", "text": "Cacbon" }},
|
| 131 |
+
{{ "label": "D", "text": "Nitơ" }}
|
| 132 |
+
],
|
| 133 |
+
"answer": "B",
|
| 134 |
+
"explanation": "Oxi là nguyên tố phong phú nhất trong vỏ trái đất, chủ yếu trong các oxit và khoáng vật.",
|
| 135 |
+
"source_chunks": [ "chunk_3" ]
|
| 136 |
+
}}
|
| 137 |
+
|
| 138 |
+
Đây là các đoạn ngữ cảnh (chỉ được phép dùng những đoạn này để soạn câu hỏi):
|
| 139 |
+
{context}
|
| 140 |
+
|
| 141 |
+
Hãy viết câu hỏi rõ ràng, không gây mơ hồ. Đảm bảo distractor (đáp án sai) là hợp lý và gây nhầm lẫn cho người học.
|
| 142 |
+
"""
|
| 143 |
+
|
| 144 |
+
# -------- call Together chat/completion ----------
|
| 145 |
+
def generate_mcq_with_rag(question_seed: str, retrieved_chunks, llm_model=DEFAULT_LLM_MODEL, temperature=0.0):
|
| 146 |
+
if client is None:
|
| 147 |
+
raise RuntimeError("Together client not initialized. Set TOGETHER_API_KEY in environment or Space secrets.")
|
| 148 |
+
|
| 149 |
+
context = ""
|
| 150 |
+
for i, (doc_text, meta, dist) in enumerate(retrieved_chunks):
|
| 151 |
+
snippet = doc_text.replace("\n", " ").strip()
|
| 152 |
+
context += f"[chunk_{meta.get('chunk_index', i)}] {snippet}\n\n"
|
| 153 |
+
|
| 154 |
+
prompt = MCQ_PROMPT_VI.format(context=context)
|
| 155 |
+
full_user = f"Yêu cầu (chủ đề / seed): {question_seed}\n\n{prompt}"
|
| 156 |
+
|
| 157 |
+
messages = [
|
| 158 |
+
{"role": "system", "content": "Bạn là một chuyên gia soạn câu hỏi trắc nghiệm bằng tiếng Việt. Chỉ trả về JSON, KHÔNG có lời giải thích thêm."},
|
| 159 |
+
{"role": "user", "content": full_user},
|
| 160 |
+
]
|
| 161 |
+
|
| 162 |
+
resp = client.chat.completions.create(
|
| 163 |
+
model=llm_model,
|
| 164 |
+
messages=messages,
|
| 165 |
+
temperature=temperature,
|
| 166 |
+
)
|
| 167 |
+
out = resp.choices[0].message.content
|
| 168 |
+
|
| 169 |
+
# try to parse JSON, fallback to extracting first {...}
|
| 170 |
+
try:
|
| 171 |
+
parsed = json.loads(out)
|
| 172 |
+
except Exception:
|
| 173 |
+
start = out.find("{")
|
| 174 |
+
end = out.rfind("}")
|
| 175 |
+
if start != -1 and end != -1:
|
| 176 |
+
try:
|
| 177 |
+
parsed = json.loads(out[start:end+1])
|
| 178 |
+
except Exception:
|
| 179 |
+
parsed = None
|
| 180 |
+
else:
|
| 181 |
+
parsed = None
|
| 182 |
+
|
| 183 |
+
# ensure question_id exists
|
| 184 |
+
if parsed and isinstance(parsed, dict):
|
| 185 |
+
if not parsed.get("question_id"):
|
| 186 |
+
parsed["question_id"] = f"q_{uuid.uuid4().hex[:8]}"
|
| 187 |
+
|
| 188 |
+
return parsed, out
|
| 189 |
+
|
| 190 |
+
# -------- high-level runner used by Gradio ----------
|
| 191 |
+
def generate_mcqs_from_pdf(pdf_path: str, seeds: List[str], questions_per_seed=1, chunk_size=DEFAULT_CHUNK_SIZE,
|
| 192 |
+
chunk_overlap=DEFAULT_CHUNK_OVERLAP, k_retrieve=DEFAULT_K_RETRIEVE,
|
| 193 |
+
embedding_model=DEFAULT_EMBEDDING_MODEL, llm_model=DEFAULT_LLM_MODEL,
|
| 194 |
+
temperature=0.0, persist_directory="./chroma_db"):
|
| 195 |
+
text = extract_text_from_pdf(pdf_path)
|
| 196 |
+
chunks = chunk_text(text, chunk_size=chunk_size, overlap=chunk_overlap)
|
| 197 |
+
|
| 198 |
+
# embed
|
| 199 |
+
chunk_embeddings = embed_texts(chunks, model=embedding_model)
|
| 200 |
+
|
| 201 |
+
# build vectorstore (recreate to avoid old data)
|
| 202 |
+
chroma_client, collection = build_chroma_collection(name="pdf_docs", persist_directory=persist_directory)
|
| 203 |
+
try:
|
| 204 |
+
collection.delete()
|
| 205 |
+
collection = chroma_client.create_collection("pdf_docs")
|
| 206 |
+
except Exception:
|
| 207 |
+
# some backends will raise; ignore and continue
|
| 208 |
+
pass
|
| 209 |
+
add_documents_to_vectorstore(collection, chunks, chunk_embeddings)
|
| 210 |
+
|
| 211 |
+
results = []
|
| 212 |
+
for seed in seeds:
|
| 213 |
+
for i in range(questions_per_seed):
|
| 214 |
+
retrieved = retrieve_relevant_chunks(collection, seed, k=k_retrieve, embedding_model=embedding_model)
|
| 215 |
+
parsed, raw = generate_mcq_with_rag(seed, retrieved, llm_model=llm_model, temperature=temperature)
|
| 216 |
+
if parsed is None:
|
| 217 |
+
item = {"seed": seed, "ok": False, "raw": raw}
|
| 218 |
+
else:
|
| 219 |
+
item = {"seed": seed, "ok": True, "mcq": parsed}
|
| 220 |
+
results.append(item)
|
| 221 |
+
|
| 222 |
+
return results
|
| 223 |
+
|
| 224 |
+
# -------- Gradio UI ----------
|
| 225 |
+
|
| 226 |
+
def ui_run(pdf_file, seeds_text, questions_per_seed, k_retrieve, chunk_size, chunk_overlap,
|
| 227 |
+
embedding_model, llm_model, temperature):
|
| 228 |
+
if pdf_file is None:
|
| 229 |
+
return "", None
|
| 230 |
+
|
| 231 |
+
# save uploaded file to temp path
|
| 232 |
+
tmp_dir = tempfile.mkdtemp()
|
| 233 |
+
local_path = os.path.join(tmp_dir, os.path.basename(pdf_file.name))
|
| 234 |
+
with open(local_path, "wb") as f:
|
| 235 |
+
f.write(pdf_file.read())
|
| 236 |
+
|
| 237 |
+
seeds = [s.strip() for s in seeds_text.split(",") if s.strip()]
|
| 238 |
+
if not seeds:
|
| 239 |
+
seeds = ["Lấy câu hỏi tổng quát về tài liệu"]
|
| 240 |
+
|
| 241 |
+
try:
|
| 242 |
+
results = generate_mcqs_from_pdf(
|
| 243 |
+
pdf_path=local_path,
|
| 244 |
+
seeds=seeds,
|
| 245 |
+
questions_per_seed=questions_per_seed,
|
| 246 |
+
chunk_size=chunk_size,
|
| 247 |
+
chunk_overlap=chunk_overlap,
|
| 248 |
+
k_retrieve=k_retrieve,
|
| 249 |
+
embedding_model=embedding_model,
|
| 250 |
+
llm_model=llm_model,
|
| 251 |
+
temperature=temperature,
|
| 252 |
+
persist_directory="./chroma_db"
|
| 253 |
+
)
|
| 254 |
+
except Exception as e:
|
| 255 |
+
return f"Lỗi khi sinh MCQ: {e}", None
|
| 256 |
+
|
| 257 |
+
out_json = json.dumps(results, ensure_ascii=False, indent=2)
|
| 258 |
+
# write output file for download
|
| 259 |
+
out_file = os.path.join(tmp_dir, "mcq_output.json")
|
| 260 |
+
with open(out_file, "w", encoding="utf-8") as f:
|
| 261 |
+
f.write(out_json)
|
| 262 |
+
|
| 263 |
+
return out_json, out_file
|
| 264 |
+
|
| 265 |
+
with gr.Blocks(title="RAG -> MCQ (Tiếng Việt)") as demo:
|
| 266 |
+
gr.Markdown("# RAG -> MCQ Generator (Tiếng Việt)\nUpload PDF, set seeds (phân tách bằng dấu phẩy), và nhấn Generate.\nOutputs: JSON trả về các câu hỏi trắc nghiệm.)")
|
| 267 |
+
|
| 268 |
+
with gr.Row():
|
| 269 |
+
with gr.Column(scale=1):
|
| 270 |
+
pdf_in = gr.File(label="Upload PDF", file_types=['.pdf'])
|
| 271 |
+
seeds_in = gr.Textbox(label="Seeds (chủ đề), phân tách bằng dấu phẩy", value="lập trình hướng đối tượng, kế thừa")
|
| 272 |
+
questions_per_seed = gr.Slider(label="Questions per seed", minimum=1, maximum=5, step=1, value=1)
|
| 273 |
+
k_retrieve = gr.Slider(label="K retrieve (số đoạn liên quan)", minimum=1, maximum=10, step=1, value=DEFAULT_K_RETRIEVE)
|
| 274 |
+
chunk_size = gr.Number(label="Chunk size (chars)", value=DEFAULT_CHUNK_SIZE)
|
| 275 |
+
chunk_overlap = gr.Number(label="Chunk overlap (chars)", value=DEFAULT_CHUNK_OVERLAP)
|
| 276 |
+
embedding_model = gr.Textbox(label="Embedding model", value=DEFAULT_EMBEDDING_MODEL)
|
| 277 |
+
llm_model = gr.Textbox(label="LLM model", value=DEFAULT_LLM_MODEL)
|
| 278 |
+
temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, step=0.05, value=0.0)
|
| 279 |
+
btn = gr.Button("Generate MCQs")
|
| 280 |
+
with gr.Column(scale=1):
|
| 281 |
+
out_text = gr.Textbox(label="Raw JSON output", lines=20)
|
| 282 |
+
out_file = gr.File(label="Download JSON")
|
| 283 |
+
|
| 284 |
+
btn.click(fn=ui_run, inputs=[pdf_in, seeds_in, questions_per_seed, k_retrieve, chunk_size, chunk_overlap,
|
| 285 |
+
embedding_model, llm_model, temperature], outputs=[out_text, out_file])
|
| 286 |
+
|
| 287 |
+
if __name__ == "__main__":
|
| 288 |
+
demo.launch()
|
| 289 |
+
|
| 290 |
+
# -------------------------------
|
| 291 |
+
# README / Deployment tips (keep in repo README.md)
|
| 292 |
+
# -------------------------------
|
| 293 |
+
# requirements.txt (suggested):
|
| 294 |
+
# gradio
|
| 295 |
+
# together
|
| 296 |
+
# chromadb
|
| 297 |
+
# pdfplumber
|
| 298 |
+
# tiktoken
|
| 299 |
+
#
|
| 300 |
+
# Deployment to HuggingFace Spaces:
|
| 301 |
+
# 1) Create a new Space, choose "Gradio" and "Python".
|
| 302 |
+
# 2) Add this file as app.py (or keep the same name), add a requirements.txt with packages above.
|
| 303 |
+
# 3) In the Space settings -> Secrets, add TOGETHER_API_KEY with your Together API key.
|
| 304 |
+
# 4) Commit & run. The Space will install dependencies and start the Gradio app.
|
| 305 |
+
#
|
| 306 |
+
# Notes:
|
| 307 |
+
# - If pip package name for Together differs, try checking Together docs. If `pip install together` fails,
|
| 308 |
+
# try searching for the SDK package name or check their GitHub/docs and update requirements accordingly.
|
| 309 |
+
# - HuggingFace Spaces have limits on disk persistence; if you want long-term persistence of the Chroma DB,
|
| 310 |
+
# consider using an external vector DB (Pinecone, Milvus, etc.) or a hosted setup.
|
| 311 |
+
# - For heavy models you may prefer to let Together host the inference (this app calls Together's API).
|
| 312 |
+
# -------------------------------
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
together
|
| 3 |
+
chromadb
|
| 4 |
+
pdfplumber
|
| 5 |
+
tiktoken
|