namfam commited on
Commit
4b031f3
·
verified ·
1 Parent(s): 5bd3427

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +78 -52
app.py CHANGED
@@ -1,64 +1,90 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
27
 
28
- response = ""
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
 
42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
  """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ from transformers import AutoProcessor, AutoModelForCausalLM
3
+ import spaces
4
 
 
 
 
 
5
 
6
+ from PIL import Image
7
 
 
 
 
 
 
 
 
 
 
8
 
9
+ import subprocess
10
+ # subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
 
 
 
11
 
12
+ model = AutoModelForCausalLM.from_pretrained('HuggingFaceM4/Florence-2-DocVQA', trust_remote_code=True).to("cuda").eval()
13
 
14
+ processor = AutoProcessor.from_pretrained('HuggingFaceM4/Florence-2-DocVQA', trust_remote_code=True)
15
 
 
 
 
 
 
 
 
 
16
 
17
+ TITLE = "# [Descripta Demo](https://huggingface.co/HuggingFaceM4/Florence-2-DocVQA)"
18
+ DESCRIPTION = "The demo for Florence-2 fine-tuned on DocVQA dataset. You can find the notebook [here](https://colab.research.google.com/drive/1hKDrJ5AH_o7I95PtZ9__VlCTNAo1Gjpf?usp=sharing). Read more about Florence-2 fine-tuning [here](finetune-florence2)."
19
 
20
 
21
+ colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red',
22
+ 'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue']
23
+
24
+ @spaces.GPU
25
+ def run_example(task_prompt, image, text_input=None):
26
+ if text_input is None:
27
+ prompt = task_prompt
28
+ else:
29
+ prompt = task_prompt + text_input
30
+ inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda")
31
+ generated_ids = model.generate(
32
+ input_ids=inputs["input_ids"],
33
+ pixel_values=inputs["pixel_values"],
34
+ max_new_tokens=1024,
35
+ early_stopping=False,
36
+ do_sample=False,
37
+ num_beams=3,
38
+ )
39
+ generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
40
+ parsed_answer = processor.post_process_generation(
41
+ generated_text,
42
+ task=task_prompt,
43
+ image_size=(image.width, image.height)
44
+ )
45
+ return parsed_answer
46
+
47
+ def process_image(image, text_input=None):
48
+ image = Image.fromarray(image) # Convert NumPy array to PIL Image
49
+ task_prompt = '<DocVQA>'
50
+ results = run_example(task_prompt, image, text_input)[task_prompt].replace("<pad>", "")
51
+ return results
52
+
53
+
54
+ css = """
55
+ #output {
56
+ height: 500px;
57
+ overflow: auto;
58
+ border: 1px solid #ccc;
59
+ }
60
  """
61
+
62
+ with gr.Blocks(css=css) as demo:
63
+ gr.Markdown(TITLE)
64
+ gr.Markdown(DESCRIPTION)
65
+ with gr.Tab(label="Florence-2 Image Captioning"):
66
+ with gr.Row():
67
+ with gr.Column():
68
+ input_img = gr.Image(label="Input Picture")
69
+ text_input = gr.Textbox(label="Text Input (optional)")
70
+ submit_btn = gr.Button(value="Submit")
71
+ with gr.Column():
72
+ output_text = gr.Textbox(label="Output Text")
73
+
74
+ gr.Examples(
75
+ examples=[
76
+ ["hunt.jpg", 'What is this image?'],
77
+ ["idefics2_architecture.png", 'How many tokens per image does it use?'],
78
+ ["idefics2_architecture.png", "What type of encoder does the model use?"],
79
+ ["image.jpg", "What's the share of Industry Switchers Gained?"]
80
+ ],
81
+ inputs=[input_img, text_input],
82
+ outputs=[output_text],
83
+ fn=process_image,
84
+ cache_examples=True,
85
+ label='Try the examples below'
86
+ )
87
+
88
+ submit_btn.click(process_image, [input_img, text_input], [output_text])
89
+
90
+ demo.launch(debug=True)