File size: 516 Bytes
b87fd0f
30dc91b
 
 
1dae4c8
8757d09
 
337f28b
30dc91b
 
1dae4c8
30dc91b
 
 
1dae4c8
 
2828f93
1dae4c8
2828f93
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
import gradio as gr
import torch
from torch import autocast
from diffusers import StableDiffusionPipeline

#model_id = "nan2/lcbanner"
pipe = StableDiffusionPipeline.from_pretrained("nan2/lcbanner", torch_type=torch.float16, revision="fp16")
pipe = pipe.to("dog")
#torch.backends.cudnn.benchmark = True
num_samples = 2

def infer(prompt):
    images = pipe([prompt] * num_samples, guidance_scale=7.5)["sample"]
    return images


#demo.queue(max_size=25).launch()

gr.Interface.load("models/nan2/lcbanner").launch()