File size: 1,701 Bytes
b87fd0f
134dc2b
 
 
 
 
84f02e7
134dc2b
 
961e92a
134dc2b
 
 
 
1dae4c8
d4a84ca
1dae4c8
1a58c28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc25121
1a58c28
 
 
 
 
 
 
7de34fd
1a58c28
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import gradio as gr
import torch
from torch import autocast
from diffusers import StableDiffusionPipeline

#model_id = "hakurei/waifu-diffusion"
pipe = StableDiffusionPipeline.from_pretrained("nan2/lcbanner", torch_type=torch.float16)
pipe = pipe.to("cuda")
#torch.backends.cudnn.benchmark = True
num_samples = 1

def infer(prompt):
    images = pipe([prompt] * num_samples, guidance_scale=7.5)["sample"]
    return images

block = gr.Blocks()

examples = [
    [
        'Goku'
    ],
    [
        'Mikasa Ackerman'
    ],
    [
        'Saber'
    ],
]

with block as demo:
    with gr.Group():
        with gr.Box():
            with gr.Row().style(mobile_collapse=False, equal_height=True):

                text = gr.Textbox(
                    label="Enter your prompt", show_label=False, max_lines=1
                ).style(
                    border=(True, False, True, True),
                    rounded=(True, False, False, True),
                    container=False,
                )
                btn = gr.Button("Run").style(
                    margin=False,
                    rounded=(False, True, True, False),
                )
               
        gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="generated_id").style(
            grid=[1], width="2048px", height="512px"
        )
        
        ex = gr.Examples(examples=examples, fn=infer, inputs=[text], outputs=gallery, cache_examples=True)
        ex.dataset.headers = [""]
        
        text.submit(infer, inputs=[text], outputs=gallery)
        btn.click(infer, inputs=[text], outputs=gallery)
    
demo.queue(max_size=25).launch()

#gr.Interface.load("models/nan2/lcbanner").launch()