from diffusers import StableDiffusionPipeline import torch import gradio as gr import random fseed=random.random() model="models/nan2/lcbanner" def TextToImage(Prompt,model): model_id = model pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to("cpu") prompt = Prompt image = pipe(prompt).images[0] return image interface = gr.Interface(fn=TextToImage, inputs=["text", "nan2/lcbanner"], outputs="image", title='Text to Image') interface.launch() #gr.Interface.load("models/nan2/lcbanner").launch()