GroundBi / app.py
naonauno's picture
Update app.py
a84d2fb verified
raw
history blame
3.46 kB
import gradio as gr
import torch
import numpy as np
import cv2
from diffusers import StableDiffusionPipeline, UniPCMultistepScheduler
from model import UNet2DConditionModelEx
from pipeline import StableDiffusionControlLoraV3Pipeline
from PIL import Image
import os
from huggingface_hub import login
# Login using the token
login(token=os.environ.get("HF_TOKEN"))
# Initialize the models
base_model = "runwayml/stable-diffusion-v1-5"
dtype = torch.float16 # A100 works better with float16
try:
# Check if CUDA is available
device = "cuda" if torch.cuda.is_available() else "cpu"
except:
device = "cpu"
# Load the custom UNet
unet = UNet2DConditionModelEx.from_pretrained(
base_model,
subfolder="unet",
torch_dtype=dtype,
device_map="auto" # Let the model handle device placement
)
# Add conditioning with ow-gbi-control-lora
unet = unet.add_extra_conditions("ow-gbi-control-lora")
# Create the pipeline with custom UNet
pipe = StableDiffusionControlLoraV3Pipeline.from_pretrained(
base_model,
unet=unet,
torch_dtype=dtype,
device_map="auto" # Let the model handle device placement
)
# Use a faster scheduler
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
# Load the ControlLoRA weights
pipe.load_lora_weights(
"models",
weight_name="40kHalf.safetensors"
)
def get_canny_image(image, low_threshold=100, high_threshold=200):
if isinstance(image, Image.Image):
image = np.array(image)
if image.shape[2] == 4:
image = image[..., :3]
canny_image = cv2.Canny(image, low_threshold, high_threshold)
canny_image = np.stack([canny_image] * 3, axis=-1)
return Image.fromarray(canny_image)
def generate_image(input_image, prompt, negative_prompt, guidance_scale, steps, low_threshold, high_threshold):
canny_image = get_canny_image(input_image, low_threshold, high_threshold)
with torch.no_grad():
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=steps,
guidance_scale=guidance_scale,
image=canny_image,
extra_condition_scale=1.0
).images[0]
return canny_image, image
# Create the Gradio interface
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="numpy")
prompt = gr.Textbox(label="Prompt")
negative_prompt = gr.Textbox(label="Negative Prompt")
with gr.Row():
low_threshold = gr.Slider(minimum=1, maximum=255, value=100, label="Canny Low Threshold")
high_threshold = gr.Slider(minimum=1, maximum=255, value=200, label="Canny High Threshold")
guidance_scale = gr.Slider(minimum=1, maximum=20, value=7.5, label="Guidance Scale")
steps = gr.Slider(minimum=1, maximum=100, value=50, label="Steps")
generate = gr.Button("Generate")
with gr.Column():
canny_output = gr.Image(label="Canny Edge Detection")
result = gr.Image(label="Generated Image")
generate.click(
fn=generate_image,
inputs=[
input_image,
prompt,
negative_prompt,
guidance_scale,
steps,
low_threshold,
high_threshold
],
outputs=[canny_output, result]
)
demo.launch()