|
import gradio as gr |
|
import torch |
|
from diffusers import StableDiffusionPipeline, ControlNetModel |
|
from safetensors.torch import load_file |
|
|
|
|
|
model_id = "runwayml/stable-diffusion-v1-5" |
|
pipe = StableDiffusionPipeline.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float32, |
|
) |
|
|
|
|
|
lora_path = "naonauno/40k-half-sd15" |
|
pipe.load_lora_weights(lora_path) |
|
|
|
def generate_image(prompt, negative_prompt, guidance_scale, steps): |
|
with torch.no_grad(): |
|
image = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
num_inference_steps=steps, |
|
guidance_scale=guidance_scale, |
|
).images[0] |
|
return image |
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
with gr.Column(): |
|
prompt = gr.Textbox(label="Prompt") |
|
negative_prompt = gr.Textbox(label="Negative Prompt") |
|
guidance_scale = gr.Slider(minimum=1, maximum=20, value=7.5, label="Guidance Scale") |
|
steps = gr.Slider(minimum=1, maximum=100, value=50, label="Steps") |
|
generate = gr.Button("Generate") |
|
|
|
with gr.Column(): |
|
result = gr.Image(label="Generated Image") |
|
|
|
generate.click( |
|
fn=generate_image, |
|
inputs=[prompt, negative_prompt, guidance_scale, steps], |
|
outputs=result |
|
) |
|
|
|
demo.launch() |