Update app.py
Browse files
app.py
CHANGED
@@ -9,13 +9,19 @@ from PIL import Image
|
|
9 |
import os
|
10 |
from huggingface_hub import login
|
11 |
import spaces
|
|
|
|
|
12 |
|
13 |
# Login using the token
|
14 |
login(token=os.environ.get("HF_TOKEN"))
|
15 |
|
|
|
|
|
|
|
|
|
16 |
# Initialize the models
|
17 |
base_model = "runwayml/stable-diffusion-v1-5"
|
18 |
-
dtype = torch.float16
|
19 |
|
20 |
# Load the custom UNet
|
21 |
unet = UNet2DConditionModelEx.from_pretrained(
|
@@ -24,25 +30,30 @@ unet = UNet2DConditionModelEx.from_pretrained(
|
|
24 |
torch_dtype=dtype
|
25 |
)
|
26 |
|
27 |
-
# Add conditioning with ow-gbi-control-lora
|
28 |
unet = unet.add_extra_conditions("ow-gbi-control-lora")
|
29 |
|
30 |
-
# Create the pipeline with custom UNet
|
31 |
pipe = StableDiffusionControlLoraV3Pipeline.from_pretrained(
|
32 |
base_model,
|
33 |
unet=unet,
|
34 |
torch_dtype=dtype
|
35 |
)
|
36 |
|
37 |
-
# Use a faster scheduler
|
38 |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
39 |
|
40 |
-
# Load the ControlLoRA weights
|
41 |
pipe.load_lora_weights(
|
42 |
"models",
|
43 |
weight_name="40kHalf.safetensors"
|
44 |
)
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
def get_canny_image(image, low_threshold=100, high_threshold=200):
|
47 |
if isinstance(image, Image.Image):
|
48 |
image = np.array(image)
|
@@ -54,8 +65,16 @@ def get_canny_image(image, low_threshold=100, high_threshold=200):
|
|
54 |
canny_image = np.stack([canny_image] * 3, axis=-1)
|
55 |
return Image.fromarray(canny_image)
|
56 |
|
57 |
-
@spaces.GPU(duration=120)
|
58 |
-
def generate_image(input_image, prompt, negative_prompt, guidance_scale, steps, low_threshold, high_threshold):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
canny_image = get_canny_image(input_image, low_threshold, high_threshold)
|
60 |
|
61 |
with torch.no_grad():
|
@@ -65,29 +84,102 @@ def generate_image(input_image, prompt, negative_prompt, guidance_scale, steps,
|
|
65 |
num_inference_steps=steps,
|
66 |
guidance_scale=guidance_scale,
|
67 |
image=canny_image,
|
68 |
-
extra_condition_scale=1.0
|
|
|
69 |
).images[0]
|
70 |
|
71 |
return canny_image, image
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
# Create the Gradio interface
|
74 |
with gr.Blocks() as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
with gr.Row():
|
76 |
with gr.Column():
|
77 |
input_image = gr.Image(label="Input Image", type="numpy")
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
with gr.Row():
|
81 |
low_threshold = gr.Slider(minimum=1, maximum=255, value=100, label="Canny Low Threshold")
|
82 |
high_threshold = gr.Slider(minimum=1, maximum=255, value=200, label="Canny High Threshold")
|
83 |
guidance_scale = gr.Slider(minimum=1, maximum=20, value=7.5, label="Guidance Scale")
|
84 |
steps = gr.Slider(minimum=1, maximum=100, value=50, label="Steps")
|
|
|
85 |
generate = gr.Button("Generate")
|
86 |
|
87 |
with gr.Column():
|
88 |
canny_output = gr.Image(label="Canny Edge Detection")
|
89 |
result = gr.Image(label="Generated Image")
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
generate.click(
|
92 |
fn=generate_image,
|
93 |
inputs=[
|
@@ -97,7 +189,8 @@ with gr.Blocks() as demo:
|
|
97 |
guidance_scale,
|
98 |
steps,
|
99 |
low_threshold,
|
100 |
-
high_threshold
|
|
|
101 |
],
|
102 |
outputs=[canny_output, result]
|
103 |
)
|
|
|
9 |
import os
|
10 |
from huggingface_hub import login
|
11 |
import spaces
|
12 |
+
import random
|
13 |
+
from pathlib import Path
|
14 |
|
15 |
# Login using the token
|
16 |
login(token=os.environ.get("HF_TOKEN"))
|
17 |
|
18 |
+
# For deterministic generation
|
19 |
+
torch.manual_seed(42)
|
20 |
+
torch.backends.cudnn.deterministic = True
|
21 |
+
|
22 |
# Initialize the models
|
23 |
base_model = "runwayml/stable-diffusion-v1-5"
|
24 |
+
dtype = torch.float16
|
25 |
|
26 |
# Load the custom UNet
|
27 |
unet = UNet2DConditionModelEx.from_pretrained(
|
|
|
30 |
torch_dtype=dtype
|
31 |
)
|
32 |
|
|
|
33 |
unet = unet.add_extra_conditions("ow-gbi-control-lora")
|
34 |
|
|
|
35 |
pipe = StableDiffusionControlLoraV3Pipeline.from_pretrained(
|
36 |
base_model,
|
37 |
unet=unet,
|
38 |
torch_dtype=dtype
|
39 |
)
|
40 |
|
|
|
41 |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
42 |
|
|
|
43 |
pipe.load_lora_weights(
|
44 |
"models",
|
45 |
weight_name="40kHalf.safetensors"
|
46 |
)
|
47 |
|
48 |
+
def get_random_condition_image():
|
49 |
+
conditions_dir = Path("conditions")
|
50 |
+
if conditions_dir.exists():
|
51 |
+
image_files = list(conditions_dir.glob("*.[jp][pn][g]")) # matches .jpg, .png, .jpeg
|
52 |
+
if image_files:
|
53 |
+
random_image = random.choice(image_files)
|
54 |
+
return str(random_image)
|
55 |
+
return None
|
56 |
+
|
57 |
def get_canny_image(image, low_threshold=100, high_threshold=200):
|
58 |
if isinstance(image, Image.Image):
|
59 |
image = np.array(image)
|
|
|
65 |
canny_image = np.stack([canny_image] * 3, axis=-1)
|
66 |
return Image.fromarray(canny_image)
|
67 |
|
68 |
+
@spaces.GPU(duration=120)
|
69 |
+
def generate_image(input_image, prompt, negative_prompt, guidance_scale, steps, low_threshold, high_threshold, seed):
|
70 |
+
if seed is not None and seed != "":
|
71 |
+
try:
|
72 |
+
generator = torch.Generator().manual_seed(int(seed))
|
73 |
+
except ValueError:
|
74 |
+
generator = torch.Generator()
|
75 |
+
else:
|
76 |
+
generator = torch.Generator()
|
77 |
+
|
78 |
canny_image = get_canny_image(input_image, low_threshold, high_threshold)
|
79 |
|
80 |
with torch.no_grad():
|
|
|
84 |
num_inference_steps=steps,
|
85 |
guidance_scale=guidance_scale,
|
86 |
image=canny_image,
|
87 |
+
extra_condition_scale=1.0,
|
88 |
+
generator=generator
|
89 |
).images[0]
|
90 |
|
91 |
return canny_image, image
|
92 |
|
93 |
+
def random_image_click():
|
94 |
+
image_path = get_random_condition_image()
|
95 |
+
if image_path:
|
96 |
+
return Image.open(image_path)
|
97 |
+
return None
|
98 |
+
|
99 |
+
# Example data
|
100 |
+
examples = [
|
101 |
+
[
|
102 |
+
"conditions/example1.jpg", # Replace with actual paths
|
103 |
+
"a futuristic cyberpunk city",
|
104 |
+
"blurry, bad quality",
|
105 |
+
7.5,
|
106 |
+
50,
|
107 |
+
100,
|
108 |
+
200,
|
109 |
+
42
|
110 |
+
],
|
111 |
+
[
|
112 |
+
"conditions/example2.jpg", # Replace with actual paths
|
113 |
+
"a serene mountain landscape",
|
114 |
+
"dark, gloomy",
|
115 |
+
7.0,
|
116 |
+
40,
|
117 |
+
120,
|
118 |
+
180,
|
119 |
+
123
|
120 |
+
]
|
121 |
+
]
|
122 |
+
|
123 |
# Create the Gradio interface
|
124 |
with gr.Blocks() as demo:
|
125 |
+
gr.Markdown(
|
126 |
+
"""
|
127 |
+
# Control LoRA v3 Demo
|
128 |
+
⚠️ Warning: This is a demo of Control LoRA v3. Please be aware that generation can take several minutes.
|
129 |
+
The model uses edge detection to guide the image generation process.
|
130 |
+
"""
|
131 |
+
)
|
132 |
+
|
133 |
with gr.Row():
|
134 |
with gr.Column():
|
135 |
input_image = gr.Image(label="Input Image", type="numpy")
|
136 |
+
random_image_btn = gr.Button("Load Random Reference Image")
|
137 |
+
|
138 |
+
prompt = gr.Textbox(
|
139 |
+
label="Prompt",
|
140 |
+
placeholder="Enter your prompt here... (e.g., 'a futuristic cyberpunk city')"
|
141 |
+
)
|
142 |
+
negative_prompt = gr.Textbox(
|
143 |
+
label="Negative Prompt",
|
144 |
+
placeholder="Enter things you don't want to see... (e.g., 'blurry, bad quality')"
|
145 |
+
)
|
146 |
with gr.Row():
|
147 |
low_threshold = gr.Slider(minimum=1, maximum=255, value=100, label="Canny Low Threshold")
|
148 |
high_threshold = gr.Slider(minimum=1, maximum=255, value=200, label="Canny High Threshold")
|
149 |
guidance_scale = gr.Slider(minimum=1, maximum=20, value=7.5, label="Guidance Scale")
|
150 |
steps = gr.Slider(minimum=1, maximum=100, value=50, label="Steps")
|
151 |
+
seed = gr.Textbox(label="Seed (empty for random)", placeholder="Enter a number for reproducible results")
|
152 |
generate = gr.Button("Generate")
|
153 |
|
154 |
with gr.Column():
|
155 |
canny_output = gr.Image(label="Canny Edge Detection")
|
156 |
result = gr.Image(label="Generated Image")
|
157 |
|
158 |
+
# Set up example gallery
|
159 |
+
gr.Examples(
|
160 |
+
examples=examples,
|
161 |
+
inputs=[
|
162 |
+
input_image,
|
163 |
+
prompt,
|
164 |
+
negative_prompt,
|
165 |
+
guidance_scale,
|
166 |
+
steps,
|
167 |
+
low_threshold,
|
168 |
+
high_threshold,
|
169 |
+
seed
|
170 |
+
],
|
171 |
+
outputs=[canny_output, result],
|
172 |
+
fn=generate_image,
|
173 |
+
cache_examples=True
|
174 |
+
)
|
175 |
+
|
176 |
+
# Handle the random image button
|
177 |
+
random_image_btn.click(
|
178 |
+
fn=random_image_click,
|
179 |
+
outputs=input_image
|
180 |
+
)
|
181 |
+
|
182 |
+
# Handle the generate button
|
183 |
generate.click(
|
184 |
fn=generate_image,
|
185 |
inputs=[
|
|
|
189 |
guidance_scale,
|
190 |
steps,
|
191 |
low_threshold,
|
192 |
+
high_threshold,
|
193 |
+
seed
|
194 |
],
|
195 |
outputs=[canny_output, result]
|
196 |
)
|