Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from diffusers import StableDiffusionPipeline, ControlNetModel
|
4 |
+
from safetensors.torch import load_file
|
5 |
+
|
6 |
+
# Initialize the pipeline with CPU
|
7 |
+
model_id = "runwayml/stable-diffusion-v1-5"
|
8 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
9 |
+
model_id,
|
10 |
+
torch_dtype=torch.float32,
|
11 |
+
)
|
12 |
+
|
13 |
+
# Load your ControlNet LoRA
|
14 |
+
lora_path = "naonauno/40k-half-sd15"
|
15 |
+
pipe.load_lora_weights(lora_path)
|
16 |
+
|
17 |
+
# Merge LoRA weights
|
18 |
+
pipe.unet.load_attn_procs(lora_state_dict)
|
19 |
+
|
20 |
+
def generate_image(prompt, negative_prompt, guidance_scale, steps):
|
21 |
+
with torch.no_grad():
|
22 |
+
image = pipe(
|
23 |
+
prompt=prompt,
|
24 |
+
negative_prompt=negative_prompt,
|
25 |
+
num_inference_steps=steps,
|
26 |
+
guidance_scale=guidance_scale,
|
27 |
+
).images[0]
|
28 |
+
return image
|
29 |
+
|
30 |
+
# Create the Gradio interface
|
31 |
+
with gr.Blocks() as demo:
|
32 |
+
with gr.Row():
|
33 |
+
with gr.Column():
|
34 |
+
prompt = gr.Textbox(label="Prompt")
|
35 |
+
negative_prompt = gr.Textbox(label="Negative Prompt")
|
36 |
+
guidance_scale = gr.Slider(minimum=1, maximum=20, value=7.5, label="Guidance Scale")
|
37 |
+
steps = gr.Slider(minimum=1, maximum=100, value=50, label="Steps")
|
38 |
+
generate = gr.Button("Generate")
|
39 |
+
|
40 |
+
with gr.Column():
|
41 |
+
result = gr.Image(label="Generated Image")
|
42 |
+
|
43 |
+
generate.click(
|
44 |
+
fn=generate_image,
|
45 |
+
inputs=[prompt, negative_prompt, guidance_scale, steps],
|
46 |
+
outputs=result
|
47 |
+
)
|
48 |
+
|
49 |
+
demo.launch()
|