Update app.py
Browse files
app.py
CHANGED
@@ -1,28 +1,38 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from diffusers import StableDiffusionPipeline
|
4 |
-
import
|
5 |
-
from huggingface_hub import login
|
6 |
-
from safetensors.torch import load_file
|
7 |
|
8 |
-
#
|
9 |
-
login(token=os.environ.get("HF_TOKEN"))
|
10 |
-
|
11 |
-
# Initialize the pipeline with CPU
|
12 |
model_id = "runwayml/stable-diffusion-v1-5"
|
13 |
pipe = StableDiffusionPipeline.from_pretrained(
|
14 |
model_id,
|
15 |
-
torch_dtype=torch.float32
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
)
|
|
|
18 |
|
19 |
-
#
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
def generate_image(prompt, negative_prompt, guidance_scale, steps):
|
25 |
with torch.no_grad():
|
|
|
|
|
|
|
26 |
image = pipe(
|
27 |
prompt=prompt,
|
28 |
negative_prompt=negative_prompt,
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from diffusers import StableDiffusionPipeline, UNet2DConditionModel
|
4 |
+
from diffusers.utils import load_image
|
|
|
|
|
5 |
|
6 |
+
# Initialize the base pipeline
|
|
|
|
|
|
|
7 |
model_id = "runwayml/stable-diffusion-v1-5"
|
8 |
pipe = StableDiffusionPipeline.from_pretrained(
|
9 |
model_id,
|
10 |
+
torch_dtype=torch.float32
|
11 |
+
)
|
12 |
+
|
13 |
+
# Load the ControlNet UNet
|
14 |
+
unet = UNet2DConditionModel.from_pretrained(
|
15 |
+
"runwayml/stable-diffusion-v1-5",
|
16 |
+
subfolder="unet",
|
17 |
+
torch_dtype=torch.float32
|
18 |
)
|
19 |
+
unet.add_extra_conditions(["canny"])
|
20 |
|
21 |
+
# Add the conditioning
|
22 |
+
pipe.unet = unet
|
23 |
+
|
24 |
+
# Load the ControlLoRA weights
|
25 |
+
pipe.load_lora_weights(
|
26 |
+
"models", # Local path to your ControlLoRA weights
|
27 |
+
weight_name="40kHalf.safetensors",
|
28 |
+
adapter_name="control_lora"
|
29 |
+
)
|
30 |
|
31 |
def generate_image(prompt, negative_prompt, guidance_scale, steps):
|
32 |
with torch.no_grad():
|
33 |
+
# Get canny edges (you'll need to implement this)
|
34 |
+
# For now, let's assume the input image processing is handled separately
|
35 |
+
|
36 |
image = pipe(
|
37 |
prompt=prompt,
|
38 |
negative_prompt=negative_prompt,
|